网络拓扑混淆技术

这篇报告围绕网络拓扑混淆技术展开,首先阐述了网络拓扑脆弱性及攻击者推理真实结构的威胁,强调了混淆防御的重要性。报告详细介绍了AntiTomo和EigenObfu两种主流方法,包括各自的算法设计、优化目标及实验效果,并总结了混淆拓扑在欺骗性、安全性、低延迟和高效率方面的优势,最后展望了未来引入蜜罐等反制措施的可能方向。

网络拓扑混淆技术-刘栋涵

原创文章,作者:bfs,如若转载,请注明出处:https://www.isclab.org.cn/2025/04/27/%e7%bd%91%e7%bb%9c%e6%8b%93%e6%89%91%e6%b7%b7%e6%b7%86%e6%8a%80%e6%9c%af/

(1)
bfsbfs
上一篇 2025年4月25日
下一篇 2025年5月1日

相关推荐

  • 面向数据异构与通信高效的联邦大模型优化与应用研究

    联邦大模型将联邦学习与大语言模型相结合,遵循“数据不动、模型动”的原则,在无需集中原始数据的前提下,共同训练与优化大模型。该技术能有效破解数据孤岛,为医疗、教育等领域提供隐私安全的…

    2025年10月27日
    447
  • 污点分析及其关键技术

          目前针对二进制漏洞挖掘主要有三个研究方向:符号执行、污点分析和模糊测试。本次报告首先介绍了污点分析的三个重要…

    2019年5月27日
    1.8K
  • 从赋能学习到知识追踪

    人工智能的发展,驱动新赋能方式,2018年国家自然科学基金首次在信息科学部下增设“教育信息科学与技术”的专门代码(F0701),同时《地平线报告(2022高等教育版)》智能学习分析…

    2022年9月19日
    921
  • 基于深度学习的文本分类方法

    在自然语言处理任务中,文本分类旨在将文本文档分类为给定的类别,是一项基础而重要的任务。近年来,深度神经模型由于其表现力和对特征工程的最低要求而在文本分类中越来越受欢迎。然而,将深度…

    2022年3月7日
    634
  • 基于深度学习的NIDS对抗样本检测与防御技术

    随着网络攻击日益复杂化,基于深度学习的入侵检测系统面临严峻的对抗性威胁。本次学术报告聚焦对抗样本的攻防研究,介绍了一种提升模型自身抗攻击能力的防御方法,以及一种能够有效甄别隐蔽对抗…

    2025年12月15日
    325
  • 群体认知诊断技术研究

    智慧教育系统的不断发展促进了在线学习的用户数量爆炸式增长,对于学生认知水平诊断要求不断提高,群体认知诊断技术能够帮助平台挖掘学习群体的共性需求,增进教学效果。本次学术报告介绍了群体…

    2025年10月11日
    297
  • 基于图神经网络的中文短文本匹配方法

    本次报告介绍一种基于图神经网络的中文短文本匹配模型,采用图结构的多粒度输入解决中文文本分词错误、不一致、歧义等问题造成的匹配性能下降问题。同时,报告介绍了文本匹配的研究现状,帮助大…

    2020年6月27日
    1.7K
  • 代码变更表示学习及其应用研究

    代码变更指对软件源代码的增加,删除,修改。软件项目的代码库可以视为一系列代码变更的有序组合,因此代码变更对理解代码库和分析软件演化过程十分重要。代码变更表示学习旨在将代码变更表示为…

    2023年7月19日
    671
  • 特定安全领域中的对抗样本防御方法

    以深度学习为代表的人工智能技术正在悄然改变人们的生产生活方式,但深度学习模型的部署也带来了一定的安全隐患。对抗样本攻击能使深度学习模型系统进行误判,对各个人工智能应用领域造成了严重…

    2021年8月31日
    1.0K
  • FNN模型正确性测试及测试样本生成

    FNN模型被广泛应用于自动驾驶、医疗诊断等安全关键的领域,因此需要测试模型的正确性,及时发现模型的缺陷并进行模型的修复与再训练。本次学术报告介绍了FNN模型正确性测试中遇到的两个关…

    2024年1月26日
    620