人工智能模型的公平性测试

人工智能技术发展迅速,不仅在图像领域,在决策系统等领域也发挥了重要作用。用于模型训练的数据集中含有显示或者隐式的敏感属性(如性别、种族等),模型往往会利用敏感属性的特征做出决策,这将导致人工智能模型在公平性方面出现偏差,产生严重的舆论影响和社会问题,因此需要测试模型的公平性并修复。本次学术报告介绍了人工智能模型公平性的定义和通用的歧视样本生成方法,并聚焦于两个最新的模型公平性修复方法。

网络安全2组-学术报告-人工智能模型的公平性测试-刘洧光-v1.0-2024.09.28

原创文章,作者:bfs,如若转载,请注明出处:https://www.isclab.org.cn/2024/09/29/%e4%ba%ba%e5%b7%a5%e6%99%ba%e8%83%bd%e6%a8%a1%e5%9e%8b%e7%9a%84%e5%85%ac%e5%b9%b3%e6%80%a7%e6%b5%8b%e8%af%95/

(0)
bfsbfs
上一篇 2024年9月23日 下午2:39
下一篇 2024年9月30日 上午11:09

相关推荐

  • 平面多标签文本分类方法

    多标签文本分类是对文本信息进行组织、利用和检索的有效手段,能够提高数据处理效率,具有重要的实际价值。平面多标签文本分类是多标签分类下的子任务,标记每个给定文本与最相关的多个标签。本…

    2023年12月27日
    427
  • 基于因果推理的对抗防御方法

    基于因果推理的对抗防御方法通过因果干预、特征解耦与不变性学习,识别并强化数据中的因果特征,抑制模型对伪相关与“捷径特征”的依赖,从而在机理上增强模型的泛化能力和抗干扰能力,使其在遭…

    2025年11月10日
    318
  • 代码异味检测

    本次学术报告对以往实验室软件系统/代码质量评估的研究方向做了一个总结并引出新的概念:代码异味检测。针对代码异味概念,生成原因和研究最新的方向进行了探讨。同时结合两篇论文,从多异味检…

    2023年6月5日
    957
  • 网络拓扑混淆技术

    这篇报告围绕网络拓扑混淆技术展开,首先阐述了网络拓扑脆弱性及攻击者推理真实结构的威胁,强调了混淆防御的重要性。报告详细介绍了AntiTomo和EigenObfu两种主流方法,包括各…

    2025年4月27日
    651
  • 深度学习语音情绪识别技术

    语音情绪识别在如今的人机交互中具有重要作用,机器可以通过语音情绪识别对用户的情绪变化做出恰当反应,提供更具个性化的服务。深度学习作为机器学习中的一个重要分支,在语音情绪识别中也有广…

    2024年11月27日
    599
  • 日志数据的深度学习异常检测方法

    本报告介绍了利用系统的日志数据进行异常检测所面临的挑战,给出了日志数据分类、用途、实例等基本概念和基础知识,并对日志数据的解析处理和利用日志数据进行异常检测的高水平文献算法进行了详…

    2021年9月23日
    1.0K
  • 关联规则分析相关算法介绍

          关联规则分析是以中基于规则的机器学习算法,也是一种用于知识发现的算法。可以在大数据中发现感兴趣的关系,目的是…

    2018年9月25日
    989
  • 智能体的工具调用攻击

    本报告探讨了大语言模型智能体工具调用机制中的安全漏洞,重点分析了两种新型攻击方法。AMA攻击通过黑盒迭代优化恶意工具的元数据,使其在语义合法的前提下显著提升被智能体选择的概率,在多…

    2026年1月26日
    40
  • 时序网络嵌入方法介绍

    网络嵌入(Network Embedding)是针对网络中节点进行特征学习的一项新兴的研究任务,它旨在将网络中的节点表示成低维、实值、稠密的向量形式,使得得到的向量形式可以在向量空…

    2020年11月16日
    1.4K