面向深度学习软件库的动态漏洞挖掘方法

针对开源软件库输入构建需要符合特定编程语言语法规范的问题,现有研究方法分别从构建模型输入和构建API输入两条路线出发,。LEMON方法针对缺陷引起的极小输出差异难以被察觉的问题,采用启发式的模型突变策略放大不同库上模型输出的差异值;FreeFuzz方法使用插桩工具,获取动态执行社区开源API代码和模型时的输入空间,实现更高的代码覆盖率,发现更多潜在缺陷。

面向深度学习软件库的动态漏洞挖掘方法-刘力源

原创文章,作者:bfs,如若转载,请注明出处:https://www.isclab.org.cn/2022/07/03/%e9%9d%a2%e5%90%91%e6%b7%b1%e5%ba%a6%e5%ad%a6%e4%b9%a0%e8%bd%af%e4%bb%b6%e5%ba%93%e7%9a%84%e5%8a%a8%e6%80%81%e6%bc%8f%e6%b4%9e%e6%8c%96%e6%8e%98%e6%96%b9%e6%b3%95/

(1)
bfsbfs
上一篇 2022年6月27日 上午9:53
下一篇 2022年7月7日

相关推荐

  • 多标签学习综述

          多标签学习的研究对于多义性对象的学习建模具有十分重要的意义,现已逐渐成为机器学习界一个新的研究热点。本次报告…

    2019年7月10日
    1.2K
  • 网络未知协议逆向技术

    网络协议逆向技术是指根据网络流量数据包进行静态分析,推断其所属协议的字段信息、报文格式、交互模式等信息。针对互联网中存在的大量未知(私有)协议进行逆向分析,发现潜在安全漏洞,对维护…

    2024年12月23日
    948
  • 大模型支持的程序崩溃故障定位方法

    本次报告聚焦大模型支持下的程序崩溃故障定位方法,介绍了AutoFL与FlexFL两个代表性算法,重点讲解了函数交互在大模型中的创新应用,并比较开源与闭源模型在定位精度与效率上的表现…

    2025年6月16日
    619
  • 网络安全态势感知

    随着网络技术的飞速发展,其安全问题日益突出。虽然已经采取了多种网络安全防护措施,但是单一的安全防护措施没有综合考虑各种防护措施之间的关联性,无法从宏观角度评估网络安全性。网络安全态…

    2020年4月21日
    1.2K
  • 机器学习常用的可解释方法

    可解释性对于建立用户与决策模型之间的信任关系至关重要,提高机器学习模型的可解释性和透明性是机器学习在现实任务中进一步发展和应用的关键。本次报告带大家了解机器学习常用的可解释方法的基…

    2020年10月25日
    1.0K
  • Python对象探究

          探讨了语言的分类方式:编译型语言和解释型语言,动态类型语言和静态类型语言,以及Python对象是如何实现的,…

    2018年7月9日
    740
  • Android消息机制

    Android消息机制,主要讲解Android系统内部不同线程之间的信息交互,具体介绍了MessageQueue、Looper和Handler三者之间的交互和各自的原理。 附件-A…

    学术报告 2018年4月3日
    737
  • 卷积神经网络在图中的应用

          卷积神经网络可以有效提取空间特征,但是它研究的对象还是限制在具有规则空间结构的欧几里得数据。本次学术报告重点…

    2018年8月20日
    973
  • 深度神经网络模型水印保护方法

    摘要:本报告介绍了深度神经网络模型水印的基本概念和嵌入方式,并讲述了两种深度神经网络模型水印保护方法,从水印嵌入、提取和验证三个角度分析了保护模型的原理,提升对模型知识产权保护的认…

    2023年3月12日
    905