机器学习常用的可解释方法

可解释性对于建立用户与决策模型之间的信任关系至关重要,提高机器学习模型的可解释性和透明性是机器学习在现实任务中进一步发展和应用的关键。本次报告带大家了解机器学习常用的可解释方法的基本原理和应用(规则提取、LIME和SHAP)。

机器学习常用的可解释方法-慕星星

原创文章,作者:bfs,如若转载,请注明出处:https://www.isclab.org.cn/2020/10/25/%e6%9c%ba%e5%99%a8%e5%ad%a6%e4%b9%a0%e5%b8%b8%e7%94%a8%e7%9a%84%e5%8f%af%e8%a7%a3%e9%87%8a%e6%96%b9%e6%b3%95/

(0)
bfsbfs
上一篇 2020年10月19日 上午11:20
下一篇 2020年11月2日 上午8:24

相关推荐

  • Web中间人攻击简介

          在网络安全方面,中间人攻击(Man-in-the-Middle Attack,MITM)是一种常用的攻击手段…

    2019年4月9日
    713
  • 归一化流在表格数据生成中的应用

    归一化流(Normalizing Flows)是一类生成模型,它利用一系列可逆变换将简单分布映射为复杂数据分布,具有精确计算概率密度的能力。在表格数据生成领域,归一化流的应用对于理…

    2024年4月17日
    1.0K
  • 使用远程服务器搭建深度学习开发环境

    本次报告首先讲解了虚拟化技术的原理和使用方式,结合多种虚拟化方式的特点,介绍了实验室内部的选择和使用情况。之后以实验室常用的系统为例,讲解了使用远程服务器搭建深度学习开发环境的过程…

    2020年2月27日
    944
  • GBDT梯度提升决策树

          梯度提升决策树(GBDT)是集成学习中梯度提升方法(Gradient Boost)与决策树(Decision…

    2018年5月7日
    766
  • DQN深度强化学习算法

    本次学术报告主要给大家详细的介绍DQN算法原理及其调参细节,并且进行举例说明和总结以加深大家的理解。

    2020年5月31日
    1.0K
  • 软件漏洞注入技术

    随着计算机技术的发展,漏洞威胁问题已然日渐严峻,高效、准确的漏洞检测技术对于漏洞的发现和防护都至关重要,但目前常用的检测算法面临漏洞数据集少、信息不准确、构建成本高等问题,所以一个…

    2023年9月27日
    755
  • 弱监督技术方法

    当前监督学习技术已经取得了巨大的成功,但是值得注意的是,由于数据标注过程的成本太高,很多任务很难获得如全部真值标签这样的强监督信息。而无监督学习由于学习过程太过困难,它的发展缓慢。…

    2022年2月21日
    776
  • 组合对抗攻击的自动化搜索方法

    对抗攻击是当下智能系统的新威胁,它使得很多在现实世界中应用的智能系统存在的安全漏洞极大地暴露了出来。近年来,学界提出了多种实现对抗攻击的方法,但是在不知道目标模型的防御细节的情况下…

    2021年5月6日
    1.2K
  • 基于元学习的知识图谱补全技术

    知识图谱补全是知识图谱技术研究热点。以前的知识图谱补全方法需要大量的训练实例,而知识图谱中普便存在“长尾数据”现象,大多关系无法提供大量样本数据。本次学术报告通过将元学习方法思想引…

    2021年6月27日
    1.6K
  • 基于输入输出扰动的模型窃取防御方法

    模型窃取防御技术能够促进深度神经网络的健康发展,推动数据交流与共享。本次报告从输入输出扰动的角度分析了模型窃取防御方法的框架,从数学角度给出了防御的基本原理以及优缺点,利用防御方法…

    2024年7月21日
    595