降维算法(二)—— MDS

降维算法(二)—— MDS降维算法(二)—— MDS降维算法(二)—— MDS降维算法(二)—— MDS降维算法(二)—— MDS降维算法(二)—— MDS降维算法(二)—— MDS降维算法(二)—— MDS

原创文章,作者:admin,如若转载,请注明出处:https://www.isclab.org.cn/2014/10/22/%e9%99%8d%e7%bb%b4%e7%ae%97%e6%b3%95%ef%bc%88%e4%ba%8c%ef%bc%89-mds/

(0)
adminadmin
上一篇 2014年10月22日 下午10:27
下一篇 2014年10月24日 上午9:29

相关推荐

  • 图神经网络可解释方法

    图神经网络模型的可解释性对于建立用户与决策模型之间的信任关系至关重要,为了安全、可信地部署图神经网络模型,需要提高图神经网络模型的可解释性和透明性。本次报告带大家了解图神经网络的可…

    2021年7月11日
    797
  • 网络嵌入研究方法综述

    网络嵌入(Network Embedding)是针对网络中节点进行特征学习的一项新兴的研究任务,它旨在将网络中的节点表示成低维、实值、稠密的向量形式,使得得到的向量形式可以在向量空…

    2020年3月23日
    1.6K
  • 文本生成中的幻觉

    本次报告讲解了文本生成中的幻觉问题。首先从文本生成的基本原理出发引入到幻觉问题,着重介绍了幻觉的概念、产生原因以及解决方法。然后从添加外部信息和幻觉数据处理两个角度入手分别介绍了K…

    2023年8月20日
    591
  • 弱监督技术方法

    当前监督学习技术已经取得了巨大的成功,但是值得注意的是,由于数据标注过程的成本太高,很多任务很难获得如全部真值标签这样的强监督信息。而无监督学习由于学习过程太过困难,它的发展缓慢。…

    2022年2月21日
    651
  • 大模型支持的程序崩溃故障定位方法

    本次报告聚焦大模型支持下的程序崩溃故障定位方法,介绍了AutoFL与FlexFL两个代表性算法,重点讲解了函数交互在大模型中的创新应用,并比较开源与闭源模型在定位精度与效率上的表现…

    2025年6月16日
    440
  • 小样本命名实体识别

    在很多场景下,收集大量的有标签的数据是非常昂贵、困难、甚至不可能。因此在特定领域、小语种等缺乏标注资源的情况下,NER 任务往往得不到有效解决。为了解决少量标注数据的命名实体识别,…

    2023年8月30日
    446
  • 机器学习中的数据不平衡问题

          数据不平衡问题是指一个类别的数据个数远远少于另一个类别的数据个数,通常这种问题被称为“数据不平衡”问题,在这…

    2018年12月17日
    571
  • 在线集成学习

          本次学术报告介绍了集成学习和在线学习基本思想,对离线bagging(装袋)和离线boosting(提升)的基…

    2019年7月1日
    983
  • 联邦学习及其后门攻击方法初探

    本次报告对联邦学习及其后门攻击方法展开介绍,阐述了联邦学习的发展脉络和三大主要框架,介绍了联邦学习安全性问题及后门攻击分类方法,重点讲解经典的集中式/分布式联邦后门攻击方法,启发思…

    2022年5月16日
    1.1K