面向联邦基础模型的安全评测与防御方法研究

聚焦IoRT/IIoT场景下联邦基础模型的安全评测与防御,概述联邦微调范式与隐蔽后门风险;重点介绍SecFFT频域一致性检测机制与长期意图建模相结合实现安全加权聚合,以及FL-IDS融合CGAN数据增强、知识蒸馏与差分隐私的联邦入侵检测框架,为可信联邦模型部署提供支撑。

面向联邦基础模型的安全评测与防御方法研究-李佳龙

原创文章,作者:bfs,如若转载,请注明出处:https://www.isclab.org.cn/2025/12/22/%e9%9d%a2%e5%90%91%e8%81%94%e9%82%a6%e5%9f%ba%e7%a1%80%e6%a8%a1%e5%9e%8b%e7%9a%84%e5%ae%89%e5%85%a8%e8%af%84%e6%b5%8b%e4%b8%8e%e9%98%b2%e5%be%a1%e6%96%b9%e6%b3%95%e7%a0%94%e7%a9%b6/

(2)
bfsbfs
上一篇 2025年12月21日 上午9:00
下一篇 2025年12月30日 下午3:20

相关推荐

  • 协同训练

        协同训练是一种多视角学习方法,当数据充分时,在具有这种特征的数据集的任何一个视图上均可以利用一定的机器学习算法训练出一个强分类器。但…

    学术报告 2018年1月7日
    897
  • 基于度量学习的小样本学习方法介绍

    Few-shot learning (FSL)的含义是得到从少量样本中学习和概括的能力,它希望机器学习模型在学习了一定类别的大量数据后,对于新的类别,只需要少量的样本就能快速学习。…

    2020年11月2日
    2.0K
  • 数据集不平衡评估方法

    本报告围绕“数据集不平衡程度评估”展开,聚焦于如何科学量化多类数据中的结构性不平衡问题,突破传统以样本比例为核心的评估局限。报告系统回顾了不平衡评估的发展脉络,分析了现有方法在面对…

    2025年7月28日
    570
  • 强化学习中的信用分配

    本报告围绕强化学习中的“信用分配”难题,系统梳理了延迟/稀疏奖励场景下如何精准识别关键动作的研究脉络, 介绍LaRe与VinePPO两项新工作 ,分别利用大模型先验与无偏采样提升奖…

    2026年1月12日
    570
  • 面向深度学习软件库的API层的漏洞挖掘方法

    深度学习软件库作为构建和训练深度学习模型的基础,对深度学习软件库进行检测、挖掘软件库的代码漏洞,是保障深度学习模型的可靠性的基础之一。本次报告介绍了2种基于API层的深度学习软件库…

    2023年2月27日
    975
  • 梯度消失和梯度爆炸的原因及解决方案

          在训练层数较多的神经网络的过程中,使用基于反向传播的梯度优化算法来优化参数有可能会遇到梯度消失或梯度爆炸的问…

    2018年5月21日
    1.3K
  • 缺乏先验知识条件下的模型窃取方法

    随着机器学习的快速发展,图像分类、恶意软件识别等多个领域都通过建立机器学习模型解决相应的问题。但由于一些训练出的模型可能涉及训练数据的隐私信息与模型的商业价值,所以其安全性一直备受…

    2021年4月14日
    1.0K
  • FNN模型正确性测试及测试样本生成

    FNN模型被广泛应用于自动驾驶、医疗诊断等安全关键的领域,因此需要测试模型的正确性,及时发现模型的缺陷并进行模型的修复与再训练。本次学术报告介绍了FNN模型正确性测试中遇到的两个关…

    2024年1月26日
    750
  • 特定安全攻防场景中的对抗样本生成方法

    最新的特定安全攻防场景可以细化为两个研究方向:匿名通信网络的网站指纹防御和僵尸网络的域名生成,以此来介绍对抗样本在防御任务和攻击任务中的应用。网站指纹攻击可以从网站中提取流量模式,…

    2021年7月26日
    1.3K
  • 深度学习模型后门攻击检测

    本报告介绍了深度学习后门攻击基本概念及后门攻击检测发展历史和类型划分等背景知识,对2种基于模型演化策略的后门攻击检测算法进行了具体说明,阐述了深度学习后门攻击检测的发展趋势和未来前…

    2024年5月20日
    1.4K