时序知识图谱推理

着大数据和人工智能技术的飞速发展,知识图谱已成为表示和存储结构化知识的重要工具,其中时序知识图谱则进一步强调了事件随时间演变的重要性。本次学术报告致力于讲解时序知识图谱推理方法,重点探索事件重复性与周期性模式以更好地理解实体和关系的时序变化,推断事件在未来的演变趋势。

时序知识图谱推理—探索事件重复性与周期性模式-齐首华

原创文章,作者:bfs,如若转载,请注明出处:https://www.isclab.org.cn/2024/05/18/%e6%97%b6%e5%ba%8f%e7%9f%a5%e8%af%86%e5%9b%be%e8%b0%b1%e6%8e%a8%e7%90%86/

(0)
bfsbfs
上一篇 2024年5月18日 下午4:24
下一篇 2024年5月18日 下午9:20

相关推荐

  • Python对象探究

          探讨了语言的分类方式:编译型语言和解释型语言,动态类型语言和静态类型语言,以及Python对象是如何实现的,…

    2018年7月9日
    727
  • 视频深度伪造及检测技术——攻与防

    摘要:本报告介绍了视频深度伪造的基本算法,针对算法中存在的3个问题,重点讲述了在小样本条件下的域迁移学习生成伪造视频,并通过攻防对抗的概念引出了伪造视频检测算法,阐明针对伪造视频中…

    2023年2月20日
    959
  • 文本风格迁移

    风格迁移是将多种类型风格转换成另一风格,是自然语言处理领域的一个重要问题,表征着文本生成和风格控制技术的发展情况,在大数据时代下的隐私保护等方面起着重要作用。本文主要介绍了文本风格…

    2020年11月10日
    1.4K
  • 人工智能模型的谈忘学习方法

    遗忘学习被称为机器遗忘或取消学习,是指机器学习或深度学习系统中先前获取的知识随着时间推移而退化的现象。本次学习报告的主要讲解了两种人工智能模型的遗忘学习方法,遗忘训练数据中的特定样…

    2024年11月5日
    703
  • 对抗环境强化学习

    强化学习(Reinforcement learning ,RL )是机器学习领域之一,研究如何通过一系列的顺序决策来达成一个特定目标。本次报告从强化学习的基本框架开始,介绍了强化学…

    2019年12月17日
    987
  • 联邦学习的后门防御方法

    本报告介绍了联邦学习领域后门攻击与防御的基本概念、联邦学习的训练流程,分别聚合规则和聚类规则的后门防御算法进行具体说明,阐述了联邦学习领域后门攻击与防御的发展方向及个人思考。

    2023年4月9日
    1.2K
  • 深度半监督聚类技术

    研究深度半监督聚类方法,首先利用自编码器对高维数据降维处理,同时提取构建三种范围的约束信息:主动构建的成对约束、带标签的种子约束、簇间大小比例约束;最后融合三种约束信息指导编码器训…

    2023年4月23日
    850
  • 面向生成模型的模型窃取方法

    针对判别模型窃取及防御方法的研究日趋成熟,近期的研究表明,生成模型同样面临模型窃取威胁。本次学术报告重点介绍了关于生成模型的窃取方法的原理,以及其与判别模型窃取方法、评价指标的区别…

    2022年7月19日
    920
  • 走近特定音频识别(之四)—— 训练和识别

    上篇文章介绍了“识别”和“检索”的区别和关系,从这篇开始,我们将从更近的距离接触特定音频识别,本文将向大家介绍特定音频识别系统的基本构成。     一个典型的特定音频识别系统的原理…

    2014年10月28日
    765