面向NIDS的流量对抗样本检测

在AI攻击复杂性和密集性不断提升的大背景下,ML-NIIDS面临巨大挑战,其中流量对抗样本严重威胁其安全稳定。本次报告从NIDS的迭代发展,聚焦到对抗性安全威胁,再引出主流流量对抗样本检测方案,从算法模型层面进行详细的分析,并对实验结果进行详细解读,总结了当前方法的不足及后续创新思路。

面向NIDS的流量对抗样本检测-邵思源

原创文章,作者:bfs,如若转载,请注明出处:https://www.isclab.org.cn/2023/10/23/%e9%9d%a2%e5%90%91nids%e7%9a%84%e6%b5%81%e9%87%8f%e5%af%b9%e6%8a%97%e6%a0%b7%e6%9c%ac%e6%a3%80%e6%b5%8b/

(0)
bfsbfs
上一篇 2023年10月23日 上午11:35
下一篇 2023年10月24日

相关推荐

  • 启发式参数优化算法举例

    优化问题在日常生活中比较常见,而对于数据挖掘领域优化问题则更为常见,更为普遍。任何一种算法在设计之初必然预留了一组可调的参数,以期通过参数调节来得到算法的最佳效果。因为参数优化问题…

    学术报告 2015年9月9日
    1.7K
  • 深度神经网络中的对抗样本攻防

          2013年以来深度的神经网络模型在各方面得到了广泛应用,甚至在某些方面达到可以匹配人类的性能,用于“欺骗”神…

    2018年8月1日
    692
  • 动态网络嵌入方法研究

    传统的网络表示一般使用高维的稀疏向量,但是局限在于难以度量节点间的相似性,而一般的静态网络嵌入方法,忽略网络的动态演化过程,因此提出了基于动态网络的嵌入方法学习。本次将基于深度自编…

    2021年6月14日
    896
  • 多标签学习

    每天都有大量的数据生成,这导致人们越来越需要新的努力来应对大数据给多标签学习带来的巨大挑战。例如,极端多标签分类是一个活跃且快速发展的研究领域,它处理的分类任务具有极其大量的类别或…

    2021年8月22日
    981
  • 人工智能生成内容检测

    本学术报告概述了人工智能生成内容检测的背景、挑战及两种核心算法——DetectGPT和DeTeCtive。重点阐述了基于概率曲率的零样本检测方法和多级对比学习框架,分析了其原理、优…

    2025年1月5日
    987
  • 数据样本的质量评估方法

    本报告主要介绍数据样本的质量评估方法。随着数据规模的不断扩大,如何有效评估数据样本的贡献成为提升模型性能和效率的关键问题。报告分析了当前领域内的主要评估方法,讨论了不同评估标准对模…

    2025年2月24日
    710
  • 代码变更表示学习及其应用研究

    代码变更指对软件源代码的增加,删除,修改。软件项目的代码库可以视为一系列代码变更的有序组合,因此代码变更对理解代码库和分析软件演化过程十分重要。代码变更表示学习旨在将代码变更表示为…

    2023年7月19日
    671
  • 论辩挖掘领域观点对识别以及抽取方法

    随着社交媒体、论坛产生的用户生成数据不断增长,从大规模信息流中发现、分离和分析论点的需求凸显了论辩挖掘的重要性。本次报告旨在了解此领域经典的系统处理流程,掌握观点对识别和抽取任务定…

    2022年6月20日
    906
  • 二进制文件复合数据类型恢复

    二进制文件复合类型恢复技术在程序理解、逆向分析和漏洞检测等领域具有关键价值,能够显著提升类型信息还原与代码语义解析的准确性与效率。该技术通过推断和重建结构体、数组等复杂数据类型,有…

    2025年9月4日
    391
  • 基于视觉直觉的源代码表征

    源代码表征是软件工程中的一个重要研究领域,主要关注如何有效地将源代码转化为可以支持各种软件工程任务(如代码搜索、克隆检测、代码自动生成等)的数学模型或数据结构。这些表征通常需要捕获…

    2024年9月23日
    509