单词级文本对抗攻击

本报告介绍了单词级文本对抗攻击(Word-Level Attack)的背景和基本原理,展示了在OpenAttack和TextAttack两类开源工具上的测试样例,并分别讲述了基于义原替换和粒子群算法的攻击方法、基于掩码语言模型生成对抗样本方法,最后概括了两类算法的优势和不足,以及未来的发展方向。

单词级文本对抗攻击-程瑶

原创文章,作者:bfs,如若转载,请注明出处:https://www.isclab.org.cn/2023/05/29/%e5%8d%95%e8%af%8d%e7%ba%a7%e6%96%87%e6%9c%ac%e5%af%b9%e6%8a%97%e6%94%bb%e5%87%bb/

(0)
bfsbfs
上一篇 2023年5月22日 上午9:23
下一篇 2023年6月5日 下午12:29

相关推荐

  • Padding–A CNN operation that cannot be ignored

    本次报告主要讲述了padding的种类及其影响,介绍了卷积网络的基本概念和性质、使用padding的主要原因等,详细讲解了特征偏移和信息侵蚀的概念、表现及解决方案,最后对paddi…

    2022年12月5日
    647
  • 模型无关元学习

    元学习是人工智能领域继深度学习、深度强化学习、生成对抗之后,又一个重要的研究分支。模型无关元学(MAML)算法可以适用于多个领域,包括少样本的回归、图像分类,以及增强学习,并且使用…

    2020年3月9日
    1.2K
  • 数据集不平衡评估方法

    本报告围绕“数据集不平衡程度评估”展开,聚焦于如何科学量化多类数据中的结构性不平衡问题,突破传统以样本比例为核心的评估局限。报告系统回顾了不平衡评估的发展脉络,分析了现有方法在面对…

    2025年7月28日
    434
  • 数据样本的质量评估方法

    本报告主要介绍数据样本的质量评估方法。随着数据规模的不断扩大,如何有效评估数据样本的贡献成为提升模型性能和效率的关键问题。报告分析了当前领域内的主要评估方法,讨论了不同评估标准对模…

    2025年2月24日
    710
  • 强化学生个性的知识追踪

    知识追踪是缓解基础教育普及需求和严重不足的教师数量之间矛盾的一个关键途径。目前,提高知识追踪的个性化水平是研究重点之一。本次报告介绍了两类强化学生个性的知识追踪技术,包括额外个性化…

    2023年12月27日
    456
  • 深度学习系统安全性测试及测试样本优先级排序

    深度学习在近十年取得了长足发展。由于其在复杂领域表现出优异的性能,逐渐被集成到软件体系中形成深度学习系统。这一方面推动了深度学习的发展,另一方面也对深度学习的安全性提出了巨大挑战:…

    2021年11月29日
    1.4K
  • 污点分析及其关键技术

          目前针对二进制漏洞挖掘主要有三个研究方向:符号执行、污点分析和模糊测试。本次报告首先介绍了污点分析的三个重要…

    2019年5月27日
    1.8K
  • 论辩挖掘领域观点对识别以及抽取方法

    随着社交媒体、论坛产生的用户生成数据不断增长,从大规模信息流中发现、分离和分析论点的需求凸显了论辩挖掘的重要性。本次报告旨在了解此领域经典的系统处理流程,掌握观点对识别和抽取任务定…

    2022年6月20日
    907
  • 机器学习中的凸优化

          机器学习模型一般可化简为求解一个目标函数/损失函数的最优化问题,根据优化目标及约束的不同,可划分为凸优化(C…

    2018年11月20日
    1.2K
  • Boosting Methods

      集成学习是机器学习领域中提升单一模型学习效果的典型方法,而Boosting则是集成学习中常用且效果良好的算法之一。通过将Weak learner巧妙地组合成Strong lea…

    学术报告 2017年9月14日
    631