匮乏资源命名实体识别

NER作为自然语言处理中的一项基础任务,应用范围非常广泛。命名实体识别是许多任务的基本组成部分,并已被深度神经网络大大推进。目前NER只是在有限的领域和实体类型中取得了较好的成绩,但这些技术无法很好地迁移到其他特定领域中,如军事、医疗、生物、小语种语言等。因此,研究匮乏资源下的命名实体识别是非常有意义的。

匮乏资源命名实体识别-吴杭颐

原创文章,作者:bfs,如若转载,请注明出处:https://www.isclab.org.cn/2021/11/02/%e5%8c%ae%e4%b9%8f%e8%b5%84%e6%ba%90%e5%91%bd%e5%90%8d%e5%ae%9e%e4%bd%93%e8%af%86%e5%88%ab/

(1)
bfsbfs
上一篇 2021年10月27日 下午4:19
下一篇 2021年11月8日 下午4:46

相关推荐

  • 即时缺陷预测技术研究

    本报告讲述了即时软件缺陷预测领域的基本概念,通过详细介绍集成了专家特征和语义特征的变更级软件缺陷预测和缺陷定位模型,启发思考通过结合专家特征和代码行上下文语义特征,提高变更级软件缺…

    2022年12月13日
    949
  • 缺乏先验知识条件下的模型窃取方法

    随着机器学习的快速发展,图像分类、恶意软件识别等多个领域都通过建立机器学习模型解决相应的问题。但由于一些训练出的模型可能涉及训练数据的隐私信息与模型的商业价值,所以其安全性一直备受…

    2021年4月14日
    889
  • 联邦学习

    联邦学习(Federated Learning)在2016年由谷歌最先提出,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或…

    2020年6月7日
    1.3K
  • Wireless Traffic Dataset for Krack and Kr00k Attacks in WPA2

    This report centers on the “Wireless Traffic Dataset for KRACK and Kr00k Attacks in …

    2025年9月28日
    282
  • 基于度量学习的小样本学习方法介绍

    Few-shot learning (FSL)的含义是得到从少量样本中学习和概括的能力,它希望机器学习模型在学习了一定类别的大量数据后,对于新的类别,只需要少量的样本就能快速学习。…

    2020年11月2日
    1.9K
  • 软件缺陷自动修复方法

    随着现代软件规模的不断扩大和复杂性的不断提高,软件缺陷调试所消耗的成本也在不断增加,软件缺陷的自动修复成为越来越迫切的需求。软件缺陷自动修复可以分为缺陷定位、补丁生成、补丁验证三个…

    2021年12月20日
    1.3K
  • 模型窃取

    机器学习,尤其是神经网络,已广泛部署在行业环境中,模型通常被部署为预测服务。但是,具有对模型的查询访问权的对手可以窃取该模型以获得与远程目标模型基本一致的替代模型,这就是模型窃取攻…

    2021年5月10日
    2.9K
  • 深度神经网络对抗样本防御方法

    近年来深度学习技术不断突破,极大促进了人工智能行业的发展,但人工智能模型本身易受到对抗攻击从而引起严重后果。对原始样本有针对性地加入微小扰动,该扰动不易被人眼所察觉,但会导致人工智…

    2021年1月4日
    1.2K
  • 组合对抗攻击的自动化搜索方法

    对抗攻击是当下智能系统的新威胁,它使得很多在现实世界中应用的智能系统存在的安全漏洞极大地暴露了出来。近年来,学界提出了多种实现对抗攻击的方法,但是在不知道目标模型的防御细节的情况下…

    2021年5月6日
    1.2K
  • Cache侧信道攻击与防御

    本报告讲述了cache侧信道攻击与防御基本分类及理论基础,给出了基于冲突和基于访问两类侧信道攻击和反制措施的基本概念,并对介绍基于映射随机化和基于隔离两类防御方法的文献进行了详细介…

    2021年11月23日
    2.1K