特定安全领域中的对抗样本防御方法

以深度学习为代表的人工智能技术正在悄然改变人们的生产生活方式,但深度学习模型的部署也带来了一定的安全隐患。对抗样本攻击能使深度学习模型系统进行误判,对各个人工智能应用领域造成了严重的安全威胁。本文从人工智能应用的特定安全领域出发,如入侵检测领域和恶意软件检测领域,介绍了对抗样本攻击的生成原因,安全领域中对抗样本与图像领域的区别以及安全领域中的对抗样本防御方法,并对当前主流的防御方法进行了总结归纳和优劣分析,对深刻理解模型内在脆弱性、全面保障智能系统安全性、广泛部署人工智能应用具有重要意义。

特定安全领域中的对抗样本防御方法-王琛

原创文章,作者:bfs,如若转载,请注明出处:https://www.isclab.org.cn/2021/08/31/%e7%89%b9%e5%ae%9a%e5%ae%89%e5%85%a8%e9%a2%86%e5%9f%9f%e4%b8%ad%e7%9a%84%e5%af%b9%e6%8a%97%e6%a0%b7%e6%9c%ac%e9%98%b2%e5%be%a1%e6%96%b9%e6%b3%95/

(1)
bfsbfs
上一篇 2021年8月22日 下午9:21
下一篇 2021年9月13日 下午7:16

相关推荐

  • 法律文本可解释性研究

    法律文本可解释性研究是将可解释性研究方法应用到法律文本领域,旨在构建智慧法庭,辅助法官判案,实现法律检索和类案匹配。本次学术报告从案件罪名预测和相似案例匹配两个应用角度进行讲解,对…

    2020年11月22日
    814
  • 基于Transformer的时间序列分析

    本次报告主要从Transformer框架入手,介绍基于Transformer模型的时间序列分析方法。针对Transformer模型的位置嵌入、注意力机制、模型架构三个方向在时间序列…

    2023年6月17日
    889
  • 神经网络模型的覆盖测试

    人工智能系统在近年来取得丰硕的成果,其中神经网络在自动驾驶领域等图像处理方向应用较为广泛。但是神经网络存在安全隐患,容易受到攻击导致决策错误,比如对抗样本攻击和后门攻击。如何测试神…

    2022年1月4日
    866
  • 对抗样本攻防的两种奇思妙想

    围绕图像对抗样本攻防这一核心主题,介绍以 Block Shuffle & Rotation(BSR) 为代表的迁移攻击增强策略,以及以 Delta Data Augment…

    2025年11月17日
    344
  • 人工智能模型的谈忘学习方法

    遗忘学习被称为机器遗忘或取消学习,是指机器学习或深度学习系统中先前获取的知识随着时间推移而退化的现象。本次学习报告的主要讲解了两种人工智能模型的遗忘学习方法,遗忘训练数据中的特定样…

    2024年11月5日
    711
  • 多人协作开发Git使用介绍

    本报告介绍多人协作开发中Git的使用,通过讲述版本控制的概念和比对不同版本控制的区别,详细阐述Git底层工作原理及Git多人协作流程和核心用法,掌握Git相关基本知识及Git的核心…

    2023年2月6日
    702
  • 基于深度学习的恶意流量检测方法

    近年来,基于机器学习的算法在恶意流量检测领域中越来越流行,但此类算法通常使用浅层模型,在训练之前需要一组专家手工制作的特征来预处理数据。此类方法的主要问题是,在不同类型的场景下,手…

    2020年12月27日
    3.2K
  • 深度生成模型

    近年,机器学习已经在计算机视觉、语音识别、语音合成以及自然语言处理(NLP)领域取得了突破性成果,在机器翻译和情感计算中展现的能力也颇令人期待。 其中机器学习方法可以分为生成方法(…

    2022年1月14日
    843
  • 深度域适应方法

    本次学术报告介绍了深度域适应方法的基本概念,以三种无监督域适应基本算法为例,简要梳理了域适应方法的发展脉络。通过分析半监督域适应方法论文,详细讲解了半监督域适应方法的基本原理。最后…

    2022年11月7日
    718
  • 内部威胁检测方法

    近年来,内部(insider)攻击,包括组织信息系统破坏、信息盗窃、电子欺诈等,具有很强的隐蔽性和破坏性,对个人、企业和国家安全构成了巨大的威胁。因此,我们应该更加关注内部威胁的研…

    2021年10月27日
    928