小样本命名实体识别

NER一直是NLP领域中的研究热点。近年来,深度学习方法在特征抽取深度和模型精度上表现优异,已经超过了传统方法,但无论是传统机器学习还是深度学习方法都依赖大量标注数据来训练模型。然而,在很多场景下,收集大量的有标签的数据是非常昂贵、困难、甚至不可能。因此在特定领域、小语种等缺乏标注资源的情况下,NER 任务往往得不到有效解决。为了解决然少量标注数据的命名实体识别。人们开始研究用迁移学习和半监督学习的方法来进行命名实体识别。本次学术报告主要介绍用迁移学习和半监督方法进行小样本命名实体识别。

小样本命名实体识别-林朝坤

原创文章,作者:bfs,如若转载,请注明出处:https://www.isclab.org.cn/2021/05/30/%e5%b0%8f%e6%a0%b7%e6%9c%ac%e5%91%bd%e5%90%8d%e5%ae%9e%e4%bd%93%e8%af%86%e5%88%ab/

(5)
bfsbfs
上一篇 2021年5月28日
下一篇 2021年6月10日

相关推荐

  • 聚类知识及其初始化问题

    聚类学习作为机器学习中最为常用的算法,已经广泛的应用于许多领域。本文主要介绍聚类的一些基础知识,并且以概率聚类模型为例,并讲解一个聚类算法:基于t分布的熵惩罚最大期望算法,使大家对…

    2019年8月24日
    817
  • 对抗环境下的鲁棒机器学习

    对抗样本的存在表明现代神经网络是相当脆弱的。为解决这一问题,研究者相继提出了许多方法,其中使用对抗样本进行训练被认为是至今最有效的方法之一。 然而,经过对抗训练后神经网络对于正常样…

    2021年1月21日
    1.1K
  • 机器学习中的非凸优化

          机器学习模型可化简为求解一个目标函数/损失函数的最优化问题,根据优化目标及约束的不同,可划分为凸优化(Con…

    2019年6月24日
    1.5K
  • 超图对比学习

    超图对比学习是一种利用超图结构来捕捉节点间复杂关系,并通过对比学习机制来优化节点表示的学习方法。本次报告通过两个算法,从超图增强技术、对比损失形式和对比训练策略三个方面介绍超图对比…

    2024年8月19日
    648
  • 源代码安全补丁存在性测试

    本报告围绕“源代码安全补丁存在性测试”展开,聚焦于如何自动识别开源软件中的安全补丁,解决安全补丁与普通补丁混杂、厂商静默发布、攻击窗口缩短等问题,介绍了一种结构感知的检测方法——R…

    2025年7月21日
    470
  • 基于神经网络的源代码表示方法

    简介:神经网络算法在自然语言和计算机视觉等领域取得了快速发展和成熟应用,且在程序分析领域也具有广泛应用,如代码克隆检测、程序分类、漏洞分析和代码搜索等任务。然而不同的程序源代码表示…

    2020年7月19日
    1.2K
  • 如何优雅地阅读和复用代码

    面对大型软件项目,如何准确、快速地找到目标代码的位置将会极大地加速我们的二次开发。本次报告以GUI程序为例介绍了软件源码查找、修改和使用的一般流程。对初学者的软件项目开发工作大有裨…

    2020年1月2日
    955
  • 如何优雅地进行模型训练

    本次报告介绍了机器学习模型训练过程中的显存优化方法。首先介绍了深度学习框架的显存利用机制,随后结合原理和具体实例讲解了“代码级”和“框架级”显存优化方法,引导大家在实际科研过程中更…

    2022年5月5日
    957
  • LLM的强化学习

    ChatGPT问世以来,LLM百花齐放,对我们的生活产生了巨大的影响。然而LLM生成的内容存在信息泄露、无中生有等诸多隐患。通过强化学习技术我们可以将生成内容与人类偏好对齐,控制L…

    2024年4月3日
    915
  • 时空数据挖掘

    物联网技术和人工智能的快速发展,含时间、空间特性的数据指数增长。如何进行多源异构时空数据本身特性出发,和机器学习深度学习技术深入融合,实现数据实现知识发现和信息挖掘,服务于城市发展…

    2021年5月18日
    979