模型窃取

机器学习,尤其是神经网络,已广泛部署在行业环境中,模型通常被部署为预测服务。但是,具有对模型的查询访问权的对手可以窃取该模型以获得与远程目标模型基本一致的替代模型,这就是模型窃取攻击。本次学术汇报从模型窃取的基本概念和常用方法分类展开讨论,然后结合两篇顶会论文介绍了两类模型窃取方法的基本原理,分析两类方法的优劣势,并且在最后还讨论了模型窃取的未来发展方向。

模型窃取-鲁川

原创文章,作者:bfs,如若转载,请注明出处:https://www.isclab.org.cn/2021/05/10/%e6%a8%a1%e5%9e%8b%e7%aa%83%e5%8f%96/

(4)
bfsbfs
上一篇 2021年5月6日 下午7:14
下一篇 2021年5月18日 上午8:54

相关推荐

  • 深度学习模型校准技术

    深度学习模型校准技术是模型预测可靠性的重要保障手段之一,其通过正则化或后处理方法调节模型对样本实例上的置信度,使其与预测的真实概率良好匹配。本次报告介绍了深度学习模型校准的基本概念…

    2024年7月2日
    891
  • 机器学习中的多分类问题

          机器学习在现实中常常遇到多分类问题,而一些优秀的二分类学习算法(如逻辑回归,SVM等等)不支持多分类任务。一…

    2019年4月21日
    773
  • 匮乏资源命名实体识别

    NER作为自然语言处理中的一项基础任务,应用范围非常广泛。命名实体识别是许多任务的基本组成部分,并已被深度神经网络大大推进。目前NER只是在有限的领域和实体类型中取得了较好的成绩,…

    2021年11月2日
    877
  • 基于Transformer的时间序列分析

    本次报告主要从Transformer框架入手,介绍基于Transformer模型的时间序列分析方法。针对Transformer模型的位置嵌入、注意力机制、模型架构三个方向在时间序列…

    2023年6月17日
    899
  • 深度神经网络模型水印保护方法

    摘要:本报告介绍了深度神经网络模型水印的基本概念和嵌入方式,并讲述了两种深度神经网络模型水印保护方法,从水印嵌入、提取和验证三个角度分析了保护模型的原理,提升对模型知识产权保护的认…

    2023年3月12日
    903
  • 属性缺失异质图神经网络

    本报告主要介绍属性缺失异质图神经网络,探讨了异质图研究领域的发展历程,详细介绍了属性缺失异质图的基本概念、常用处理方法以及两种前沿的属性补全异质图神经网络。

    2025年2月20日
    519
  • DNN模型水印及其鲁棒性评估

    模型水印技术是一种利用特定信息认证保护模型知识产权的方法。本次报告分析了深度学习领域现有的模型水印嵌入方法,从性能鲁棒性和稳定鲁棒性两方面讲述模型水印鲁棒性评估方法,并以实例分析和…

    2023年11月30日
    745
  • Java虚拟机垃圾回收机制

        Java虚拟机实现了自动内存管理机制,包括自动内存分配和自动垃圾回收,大大避免了由于代码错误导致的内存泄漏和溢出,得到大量开发者青睐…

    学术报告 2017年12月18日
    810
  • 自动化程序缺陷修复及其应用研究

    大型复杂软件系统的高频率开发迭代,导致潜在缺陷数量增加,影响工业控制、交通管理等关键领域正常运转。缺陷修复指生成软件缺陷的修复代码,降低人工成本。研究自动化缺陷修复,能够及时修复软…

    2024年8月18日
    513
  • Android APP共享库加固

        学术报告介绍了一种基于init节区的安卓共享库加固方式、一些防逆向工具和反调试的方法以及解释执行保护共享库的内容。 附件-Andro…

    学术报告 2017年12月11日
    602