提高对抗鲁棒性的特征降噪方法

当深度学习以惊人的准确性执行各种各样任务的同时,在图像分类等领域的深度神经网络却容易受到对抗样本的攻击,从而输出错误的预测结果。本次学术报告首先说明了对抗攻防的主要方法分类和残差网络的特点,然后重点讲解了一种提高对抗鲁棒性的特征降噪方法,最后介绍了对抗样本的应用领域。

提高对抗鲁棒性的特征降噪方法-于浩淼

原创文章,作者:bfs,如若转载,请注明出处:https://www.isclab.org.cn/2021/04/19/%e6%8f%90%e9%ab%98%e5%af%b9%e6%8a%97%e9%b2%81%e6%a3%92%e6%80%a7%e7%9a%84%e7%89%b9%e5%be%81%e9%99%8d%e5%99%aa%e6%96%b9%e6%b3%95/

(0)
bfsbfs
上一篇 2021年4月14日 下午3:49
下一篇 2021年4月26日 上午10:58

相关推荐

  • 机器学习中的数据不平衡问题

          数据不平衡问题是指一个类别的数据个数远远少于另一个类别的数据个数,通常这种问题被称为“数据不平衡”问题,在这…

    2018年12月17日
    692
  • 面向网络应用程序的模糊测试

    本报告介绍了模糊测试中的基本概念及网络应用程序漏洞挖掘发展历史和类型划分等背景知识,对2种基于覆盖引导的灰盒web模糊测试算法进行了具体说明,阐述了网络应用程序漏洞挖掘的发展趋势和…

    2024年5月31日
    430
  • GBDT梯度提升决策树

          梯度提升决策树(GBDT)是集成学习中梯度提升方法(Gradient Boost)与决策树(Decision…

    2018年5月7日
    748
  • 代码摘要技术

    代码摘要(Code Summarization)是一项通过自动生成自然语言描述以解释目标代码的技术。其目标是帮助理解代码的功能和用途。通过本次学术报告对学习代码摘的学习,希望大家可…

    2024年9月23日
    493
  • 文本安全

    动态规划——最小编辑代价 序列标注模型 命名实体识别简介 文本表示方法(一)——空间向量模型 文本表示方法(二)——潜在语义分析 文本表示方法(三)——topic models i…

    学术报告 2014年10月18日
    569
  • Transformer中的Multi-Head Attention

          注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中。随着注意力机制的…

    2018年12月17日
    830
  • Wireless Traffic Dataset for Krack and Kr00k Attacks in WPA2

    This report centers on the “Wireless Traffic Dataset for KRACK and Kr00k Attacks in …

    2025年9月28日
    279
  • Padding–A CNN operation that cannot be ignored

    本次报告主要讲述了padding的种类及其影响,介绍了卷积网络的基本概念和性质、使用padding的主要原因等,详细讲解了特征偏移和信息侵蚀的概念、表现及解决方案,最后对paddi…

    2022年12月5日
    647
  • 自动化漏洞挖掘初探

    摘要:本报告介绍了web漏洞挖掘中的基本概念,实战通用方案及相关思路总结,进一步详细讲解了手工挖掘中存在的痛点问题,重点阐述了前沿自动化漏洞挖掘算法原理,分析其如何弥补手工挖掘的不…

    2023年2月13日
    916
  • 开放式信息抽取技术

    本报告介绍了开放式信息抽取(OIE)的基本概念,展示了Neural OIE的两大类方法原理,并分别讲述了基于Transformer的Nerual OIE技术和利用Meta-Lear…

    2023年5月4日
    842