深度神经网络对抗样本防御方法

近年来深度学习技术不断突破,极大促进了人工智能行业的发展,但人工智能模型本身易受到对抗攻击从而引起严重后果。对原始样本有针对性地加入微小扰动,该扰动不易被人眼所察觉,但会导致人工智能模型识别错误,这种攻击被称为“对抗攻击“。本次报告首先介绍了深度神经网络中对抗样本的基本概念,分析经典的对抗样本攻击方法,接着介绍了对抗攻击的防御思路,并讲解了两篇领域内经典的防御论文,为之后深度神经网络对抗样本防御的研究提供了方向。

深度神经网络对抗样本防御方法-王琛

原创文章,作者:bfs,如若转载,请注明出处:https://www.isclab.org.cn/2021/01/04/%e6%b7%b1%e5%ba%a6%e7%a5%9e%e7%bb%8f%e7%bd%91%e7%bb%9c%e5%af%b9%e6%8a%97%e6%a0%b7%e6%9c%ac%e9%98%b2%e5%be%a1%e6%96%b9%e6%b3%95/

(1)
bfsbfs
上一篇 2020年12月28日 上午11:47
下一篇 2021年1月10日 下午8:54

相关推荐

  • 污点分析及其关键技术

          目前针对二进制漏洞挖掘主要有三个研究方向:符号执行、污点分析和模糊测试。本次报告首先介绍了污点分析的三个重要…

    2019年5月27日
    1.8K
  • 模型窃取防御:从被动溯源到主动防御

    本次学术报告探讨模型窃取防御方法,重点介绍两种前沿防御方案。ModelShield采用自适应鲁棒水印技术,通过查询响应分布自动注入水印,实现被动溯源与版权验证;QUEEN则基于查询…

    2025年12月8日
    345
  • 基于图的知识追踪方法研究

    随着智慧教育系统(Intelligent Tutoring System, ITS)的快速发展,ITS以其时空约束少、便捷程度高和个性化定制学习的优势,在现代教育事业中获得广泛关注…

    2023年5月15日
    895
  • Web快速开发方法简介

    本次报告先介绍了五种Web开发模式,讲解了各种开发模式的结构和优缺点,并结合实验室内部情况对合适的开发模式进行了推荐。之后简单介绍了Django、Flask、CherryPy这三个…

    2020年1月13日
    971
  • Boosting Methods

      集成学习是机器学习领域中提升单一模型学习效果的典型方法,而Boosting则是集成学习中常用且效果良好的算法之一。通过将Weak learner巧妙地组合成Strong lea…

    学术报告 2017年9月14日
    631
  • 面向网络应用程序的模糊测试

    本报告介绍了模糊测试中的基本概念及网络应用程序漏洞挖掘发展历史和类型划分等背景知识,对2种基于覆盖引导的灰盒web模糊测试算法进行了具体说明,阐述了网络应用程序漏洞挖掘的发展趋势和…

    2024年5月31日
    432
  • 数据样本的质量评估方法

    本报告主要介绍数据样本的质量评估方法。随着数据规模的不断扩大,如何有效评估数据样本的贡献成为提升模型性能和效率的关键问题。报告分析了当前领域内的主要评估方法,讨论了不同评估标准对模…

    2025年2月24日
    715
  • 网络表示学习-SDNE

          真实的网络结构是高度非线性和复杂的,现有的浅层模型的网络嵌入方法都无法很好地表示更高级的非线性的网络结构。因…

    2019年3月26日
    635
  • 对抗式多任务学习

          对抗式多任务学习是针对普通的多任务学习模型在共享特征提取时,可能会被特定任务的特定特征所污染的问题所提出的,…

    2019年8月13日
    1.0K
  • 多视角深度学习

    多视角即从各种不同的角度观察同一事物 ,在深度学习中即引入一个函数去模型化特定的视角,并且利用相同输入的冗余视角去联合优化所有函数,达到更好的模型效果。多视角学习可应用于大多数数据…

    2021年7月18日
    892