基于GAN的表格数据生成

生成式对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。本次学术报告将回顾关于GAN的原理、优缺点和应用场景,并介绍基于GAN的表格数据生成算法:CTGAN。

基于GAN的表格数据生成-李班

原创文章,作者:bfs,如若转载,请注明出处:https://www.isclab.org.cn/2020/10/12/%e5%9f%ba%e4%ba%8egan%e7%9a%84%e8%a1%a8%e6%a0%bc%e6%95%b0%e6%8d%ae%e7%94%9f%e6%88%90/

(2)
bfsbfs
上一篇 2020年10月8日 下午10:26
下一篇 2020年10月14日 下午9:37

相关推荐

  • 网络表示学习-SDNE

          真实的网络结构是高度非线性和复杂的,现有的浅层模型的网络嵌入方法都无法很好地表示更高级的非线性的网络结构。因…

    2019年3月26日
    637
  • 频繁项集算法分析

    一、 什么是频繁项集项集是指事项的集合,而频繁项集就是频繁出现在数据集中的项集,说白了就在数据集中“出现次数足够多”的项集。其中,项集的出现频度是指包含项集的事务的数量,简称为项集…

    2015年6月18日
    1.9K
  • 基于LSTM-CRF的序列标注算法

        条件随机场(conditional random fields)是一种满足马尔可夫性质的条件概率图模型。它很好地解决了隐马尔可夫模型…

    学术报告 2018年1月29日
    899
  • 二进制文件复合数据类型恢复

    二进制文件复合类型恢复技术在程序理解、逆向分析和漏洞检测等领域具有关键价值,能够显著提升类型信息还原与代码语义解析的准确性与效率。该技术通过推断和重建结构体、数组等复杂数据类型,有…

    2025年9月4日
    398
  • 深度神经网络鲁棒性评估方法

    深度学习模型具有高度非线性和特征空间抽象等特性,内部决策逻辑难以解释,导致其实际应用严重受限。本次报告从深度神经网络可解释性的基本概念出发,对常见的解释方法进行简介,并介绍了一篇将…

    2023年11月30日
    671
  • 扩散模型加速采样方法与应用

    扩散模型在数据生成的众多领域上呈现出了非常好的效果。然而,在实际应用过程中,扩散模型的采样原理导致其生成速度非常缓慢,严重限制了模型的实际应用效果。为了对采样生成过程进行优化,近年…

    2023年4月17日
    714
  • 无监督数据增强研究

          面对渴求大量数据的深度学习,数据扩增方法可以缓和一部分需求,但数据扩增方法往往只应用在有监督学习设定中,带来…

    2019年7月28日
    971
  • 基于MPEG-2码流的非线性编辑系统编辑方法

    以本人为主提出了基于ES(基本数据流层)的视, 音频剪辑算法;基于打包数据流层的视, 音频剪辑算法;基于PES流的视, 音频同步剪辑算法。并基于这些算法实现了基于MPEG-2码流的…

    2011年10月9日
    737
  • 网络未知协议逆向技术

    网络协议逆向技术是指根据网络流量数据包进行静态分析,推断其所属协议的字段信息、报文格式、交互模式等信息。针对互联网中存在的大量未知(私有)协议进行逆向分析,发现潜在安全漏洞,对维护…

    2024年12月23日
    941
  • 一段话,多个情绪?模型如何识别“情绪变化”的蛛丝马迹

    情绪变化识别在人机交互、情绪计算等对话智能领域中具有重要价值,显著增强了模型对动态语境的理解能力。本次报告将介绍对话与语音中的情绪建模任务,分析其研究背景与应用意义,并重点讲解两类…

    2025年4月14日
    605