网络表示学习GraphGAN

网络表示学习(Network Representation Learning),又名网络嵌入(Network Embedding)、图嵌入(Graph Embedding),旨在从网络数据中学习得到网络中每个节点的低维、实值、稠密的向量表示, 之后这些节点表示就可以作为节点的特征应用于后续的网络应用任务中,如节点分类、链接预测、社区发现、可视化任务等。本次报告介绍了一种结合生成式模型和判别式模型的基于生成对抗网络的网络表示学习的方法GraphGAN。

学术报告-算法-网络表示学习GraphGAN-周妍汝-v1.0-2019.11.03

原创文章,作者:admin,如若转载,请注明出处:https://www.isclab.org.cn/2019/11/13/%e7%bd%91%e7%bb%9c%e8%a1%a8%e7%a4%ba%e5%ad%a6%e4%b9%a0graphgan/

(0)
adminadmin
上一篇 2019年10月29日 下午10:23
下一篇 2019年11月14日 下午2:47

相关推荐

  • 面向恶意软件检测系统的对抗样本攻击

    当下投入使用的恶意软件检测系统日益增多,但同时还带来了大量的安全问题,如何有效地提高恶意软件检测系统的鲁棒性变成当下重要的课题。在这里,从攻击者的角度入手,面向恶意软件检测系统,着…

    2020年5月24日
    1.6K
  • 论辩挖掘领域观点对识别以及抽取方法

    随着社交媒体、论坛产生的用户生成数据不断增长,从大规模信息流中发现、分离和分析论点的需求凸显了论辩挖掘的重要性。本次报告旨在了解此领域经典的系统处理流程,掌握观点对识别和抽取任务定…

    2022年6月20日
    770
  • 鲁棒性认证方法

    随着对抗样本的危险性日益凸显,提高模型的鲁棒性成为研究的主要方向之一,然而,在评估鲁棒性方面还没有统一的标准,使得不同的防御方法之间对比存在很大的困难。

    2021年9月13日
    1.1K
  • 隐私保护的领域自适应迁移学习方法

    本报告讲述了隐私计算技术体系的整体架构及主要理论,给出了迁移学习及领域自适应问题的基本概念,通过详细介绍隐私保护政策下最新的去中心化无监督领域自适应论文以及基于隐私保护的模型联邦个…

    2021年10月11日
    731
  • 计算机启动流程详解2

          计算机从按下电源按钮到操作系统启动完成的过程其实相当复杂,大多数普通用户可能并不了解其中的过程和玄机。本次报…

    2018年6月10日
    618
  • 基于网络一致性的对抗样本检测

    人工智能系统面临着多种安全威胁,其中对抗样本攻击被广泛应用于诸如计算机视觉、自然语言处理、音频处理以及恶意软件检测等多个领域。本文介绍了常见的对抗样本检测方法和原理。特别的,简单分…

    2020年12月20日
    910
  • 胶囊(向量神经)网络

        胶囊(向量神经)网络是针对CNN的缺陷提出的一种新的方法,主要实现了两点改进:1.将CNN的输出结果由标量(scalar)替换成了向…

    学术报告 2018年2月26日
    738
  • 预训练在NLP的发展

    自从深度学习火起来后,预训练过程就是做图像或者视频领域的一种比较常规的做法,有比较长的历史了,而且这种做法很有效,能明显促进应用的效果。那预训练在自然语言处理中优势怎样发展起来的呢…

    2019年10月20日
    713
  • 基于LSTM-CRF的序列标注算法

        条件随机场(conditional random fields)是一种满足马尔可夫性质的条件概率图模型。它很好地解决了隐马尔可夫模型…

    学术报告 2018年1月29日
    693
  • 基于视觉直觉的源代码表征

    源代码表征是软件工程中的一个重要研究领域,主要关注如何有效地将源代码转化为可以支持各种软件工程任务(如代码搜索、克隆检测、代码自动生成等)的数学模型或数据结构。这些表征通常需要捕获…

    2024年9月23日
    365