Glibc内存管理2

      内存管理是指软件运行时对计算机内存资源的分配和使用的技术。其最主要的目的是如何高效,快速的分配,并且在适当的时候释放和回收内存资源。本次报告分三个方面来讲:核心结构体,关键函数,初始化源码分析。

附件-Glibc内存管理2.pdf

原创文章,作者:admin,如若转载,请注明出处:https://www.isclab.org.cn/2019/06/19/%e5%ad%a6%e6%9c%af%e6%8a%a5%e5%91%8a-glibc%e5%86%85%e5%ad%98%e7%ae%a1%e7%90%862/

(2)
adminadmin
上一篇 2019年6月14日 下午4:25
下一篇 2019年6月24日 下午7:23

相关推荐

  • 联邦学习

    联邦学习(Federated Learning)在2016年由谷歌最先提出,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或…

    2020年6月7日
    1.3K
  • Python对象探究

          探讨了语言的分类方式:编译型语言和解释型语言,动态类型语言和静态类型语言,以及Python对象是如何实现的,…

    2018年7月9日
    729
  • 基于模型修改的深度学习后门攻击

    本报告介绍了深度学习后门攻击的基本概念、类型划分等背景知识,对一种基于模型权重修改和一种基于模型结构修改的后门攻击算法进行了具体说明,阐述了对于深度学习后门攻击领域现状的未来发展的…

    2023年3月20日
    1.1K
  • 基于大语言模型的事件根因分析

    主要探讨基于大语言模型的事件根因分析。阐述其研究背景、意义,涉及 RCACopilot 和 RCAgent 算法,包含数据收集、处理、输出,以及算法的具体流程等。通过实验对比展示其…

    2024年11月27日
    670
  • 协同训练

        协同训练是一种多视角学习方法,当数据充分时,在具有这种特征的数据集的任何一个视图上均可以利用一定的机器学习算法训练出一个强分类器。但…

    学术报告 2018年1月7日
    776
  • 显式周期引导的长时序列预测

    该研究提出显式周期引导的长期时间序列预测方法,核心包括Periodformer和CycleNet两种模型。Periodformer通过周期注意力机制显式捕捉长期周期性模式,降低计算…

    2025年11月3日
    266
  • 深度生成模型

    近年,机器学习已经在计算机视觉、语音识别、语音合成以及自然语言处理(NLP)领域取得了突破性成果,在机器翻译和情感计算中展现的能力也颇令人期待。 其中机器学习方法可以分为生成方法(…

    2022年1月14日
    842
  • 偷走你的训练数据:模型反演攻击方法研究

    通过模型反演攻击方法研究,验证了模型训练数据面临泄露风险的问题,并希望以此促进对应防御手段的发展。本次学术报告介绍了模型反演攻击方法的相关知识,并聚焦于两个经典的白盒和黑盒攻击方法…

    2024年2月27日
    1.1K
  • 预训练加密流量分类方法

    本文介绍两种预训练加密流量分类方法:基于BERT和包头信息的分类系统,利用包头字段生成语义句子;YaTC模型采用MFR矩阵和注意力机制,结合MAE进行预训练。未来研究需优化模型效率…

    2025年2月10日
    823
  • 基于因果推理的对抗防御方法

    基于因果推理的对抗防御方法通过因果干预、特征解耦与不变性学习,识别并强化数据中的因果特征,抑制模型对伪相关与“捷径特征”的依赖,从而在机理上增强模型的泛化能力和抗干扰能力,使其在遭…

    2025年11月10日
    319