Not all bytes are equal Neural byte siev

      简单高效的漏洞检测方法一直是信息系统安全领域研究的热点,微软研究人员借助机器学习和深度神经网络开发出一种用于发现软件安全漏洞的新方法,这个名为“神经网络模糊测试”的最新研究项目旨在对传统模糊测试技术加以强化,而且早期实验已经显现出良好的效果。研究通过在灰箱模糊测试器的反馈回路中插入一个深度神经网络来从现有模糊测试器中学习策略,取得了不错的实验效果。

附件-Not all bytes are equal Neural byte siev.pdf

原创文章,作者:admin,如若转载,请注明出处:https://www.isclab.org.cn/2019/01/21/%e5%ad%a6%e6%9c%af%e6%8a%a5%e5%91%8a-not-all-bytes-are-equal-neural-byte-siev/

(0)
adminadmin
上一篇 2019年1月21日 上午10:12
下一篇 2019年1月21日

相关推荐

  • 缺乏先验知识条件下的模型窃取方法

    随着机器学习的快速发展,图像分类、恶意软件识别等多个领域都通过建立机器学习模型解决相应的问题。但由于一些训练出的模型可能涉及训练数据的隐私信息与模型的商业价值,所以其安全性一直备受…

    2021年4月14日
    890
  • 操作系统与内核安全基础

    本次报告从计算机的总体结构切入,介绍的了计算机系统的分层体系结构;对操作系统及其内核的做了详细说明,包括操作系统与操作系统内核的关系,以及操作系统内核的主要功能等内容;报告还分析了…

    2019年11月14日
    1.2K
  • 深度神经网络模型后门攻击检测

    本报告介绍了深度学习后门攻击及其检测的基本概念、类型划分等背景知识,对2种基于主动策略的后门攻击检测算法进行了具体说明,阐述了对于深度学习后门攻击检测的发展趋势和未来前景。

    2023年11月3日
    1.3K
  • 联邦学习

    联邦学习(Federated Learning)在2016年由谷歌最先提出,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或…

    2020年6月7日
    1.3K
  • 基于大语言模型的事件根因分析

    主要探讨基于大语言模型的事件根因分析。阐述其研究背景、意义,涉及 RCACopilot 和 RCAgent 算法,包含数据收集、处理、输出,以及算法的具体流程等。通过实验对比展示其…

    2024年11月27日
    673
  • DEEP-GAUSSIAN-MIXTURE-MODEL

    近年来,尽管针对监督任务的深度模型取得了巨大成功,但机器学习和统计学界对深度聚类方 法的研究有限。在这次学术报告中,我们将讨论深度高斯混合聚类,一个由经典高斯混合模型推广而来 的强…

    2019年10月27日
    879
  • 生成扩散模型

    受热力学的启发,扩散模型目前产生了最先进的图像质量:2021年,扩散模型在图像生成方面的效果击败了GAN。除了尖端的生成质量,扩散模型还不需要对抗性训练;在训练效率方面还具有可扩展…

    2022年9月13日
    1.2K
  • 大模型指导的协议模糊测试

    本次报告围绕大模型指导的协议模糊测试技术展开,首先阐述了大模型指导的协议模糊测试的基本概念、研究背景和研究意义,然后介绍了传统协议模糊测试方法的特点与优劣势,并介绍了大模型指导的协…

    2025年5月19日
    610
  • Floyd解决传递闭包

    传递闭包:在数学上的定义——在集合X上的二元关系R的传递闭包是包含R的X上的最小传递关系。其中定义域是数据集X,而运算关系是必须具有传递性,这里的最小传递关系指的是包含所有可达路径…

    2015年3月10日
    982