Boosting Methods

  集成学习是机器学习领域中提升单一模型学习效果的典型方法,而Boosting则是集成学习中常用且效果良好的算法之一。通过将Weak learner巧妙地组合成Strong learner,即使是简单的决策树桩,也能构建性能优良的学习模型以解决复杂的分类、回归问题。本次报告,将带领大家由浅入深走入Boosting,了解其背后的秘密!

附件-提升方法(Boosting Methods).pdf

原创文章,作者:admin,如若转载,请注明出处:https://www.isclab.org.cn/2017/09/14/boosting-methods/

(1)
adminadmin
上一篇 2017年9月7日
下一篇 2017年9月20日

相关推荐

  • 走近特定音频识别(之五)—— 音频预处理技术

    上一篇博文向大家介绍了,一个典型的特定音频识别系统的原理如下图所示:                             特定音频识别系统原理图 ​    上图中可以看到,离线…

    2014年10月28日
    2.1K
  • 基于神经网络的源代码表示方法

    简介:神经网络算法在自然语言和计算机视觉等领域取得了快速发展和成熟应用,且在程序分析领域也具有广泛应用,如代码克隆检测、程序分类、漏洞分析和代码搜索等任务。然而不同的程序源代码表示…

    2020年7月19日
    1.4K
  • 虚拟化云平台异常行为检测方法

    本报告对虚拟化云平台面临的安全威胁与挑战进行介绍,阐述了可用于云平台虚拟机安全检测的系统数据源,重点介绍了利用系统调用序列、系统运行日志的虚拟机异常检测方法,并且概要性介绍了多种序…

    2022年5月9日
    1.1K
  • 网络表示学习-Deepwalk

          网络表示是衔接网络原始数据和网络应用任务的桥梁。网络表示学习算法负责从网络数据中学习得到网络中每个节点的向量…

    2019年3月18日
    998
  • 深度神经网络模型窃取防御方法

    模型窃取防御技术能够促进深度神经网络的健康发展,推动数据交流与共享。本次报告从大范围的模型窃取防御领域,聚焦到一类算法,从数学公式上对算法进行详细的分析,并对实验结果进行详细解读,…

    2023年9月27日
    1.0K
  • 特定安全攻防场景中的对抗样本生成方法

    最新的特定安全攻防场景可以细化为两个研究方向:匿名通信网络的网站指纹防御和僵尸网络的域名生成,以此来介绍对抗样本在防御任务和攻击任务中的应用。网站指纹攻击可以从网站中提取流量模式,…

    2021年7月26日
    1.4K
  • 基于深度学习的恶意软件检测

    1.恶意软件检测发展历史2.深度学习在恶意软件检测上的应用3.恶意软件反检测技术

    2020年9月27日
    1.0K
  • 数据处理:飞一般的感觉

    本次报告介绍了Python中数据读取和处理的优化方法,对比了csv、pkl、feather、json等数据存储格式的读写速度与空间占用,分析了各数据格式的具体应用场景,同时引入混合…

    2022年12月26日
    830
  • 时空数据挖掘

    物联网技术和人工智能的快速发展,含时间、空间特性的数据指数增长。如何进行多源异构时空数据本身特性出发,和机器学习深度学习技术深入融合,实现数据实现知识发现和信息挖掘,服务于城市发展…

    2021年5月18日
    1.2K