学术报告
-
不规则多元时间序列预测研究
时序数据预测任务是时间序列处理领域中一项基本的任务,根据历史时间段数据序列预测未来一段时间的数据序列,广泛应用于天气预报、经济预测、医疗保健预测等领域。在复杂的现实世界中,时序数据…
-
基于深度学习的二进制函数相似性分析:深入探究两大主流研究方向
二进制函数相似性分析在1-Day漏洞检测、代码克隆检测、恶意软件检测、软件剽窃检测和自动软件修复等多个应用领域中具有广泛的应用。本次学术报告主要讲解了二进制函数相似性分析任务的研究…
-
偷走你的训练数据:模型反演攻击方法研究
通过模型反演攻击方法研究,验证了模型训练数据面临泄露风险的问题,并希望以此促进对应防御手段的发展。本次学术报告介绍了模型反演攻击方法的相关知识,并聚焦于两个经典的白盒和黑盒攻击方法…
-
FNN模型正确性测试及测试样本生成
FNN模型被广泛应用于自动驾驶、医疗诊断等安全关键的领域,因此需要测试模型的正确性,及时发现模型的缺陷并进行模型的修复与再训练。本次学术报告介绍了FNN模型正确性测试中遇到的两个关…
-
对抗性扰动下的后门防御方法
后门防御旨在使用神经元剪枝、知识蒸馏等手段消除模型中隐藏的后门,阻止攻击者使用触发器样本控制深度学习模型的输出。本次学术报告主要讲解了两种以对抗性扰动和后门攻击关系为基础的后门防御…
-
DNN中的理论可解释性
自DNN诞生起,人们就开始尝试对其解释。若要对DNN进行定量、严谨的解释,数学层面的理论构建是必要的。本次报告介绍了基于博弈论Shapley Value构建的DNN可解释性理论体系…
-
大语言模型调研
针对大语言模型展开调研,介绍大语言模型发展背景和研究现状,通过讲解LLaMA2模型的预训练和微调步骤,全面讲解大语言模型的训练过程,随后对越狱攻击大语言模型的方法进行研究,通过讲解…
-
平面多标签文本分类方法
多标签文本分类是对文本信息进行组织、利用和检索的有效手段,能够提高数据处理效率,具有重要的实际价值。平面多标签文本分类是多标签分类下的子任务,标记每个给定文本与最相关的多个标签。本…
-
强化学生个性的知识追踪
知识追踪是缓解基础教育普及需求和严重不足的教师数量之间矛盾的一个关键途径。目前,提高知识追踪的个性化水平是研究重点之一。本次报告介绍了两类强化学生个性的知识追踪技术,包括额外个性化…
-
多视图聚类技术
多视图聚类技术旨在利用不同视图之间信息的互补性和一致性增强模型的鲁棒性,提高聚类准确率。本次报告首先讲述多视图聚类的基本概念,然后结合两篇算法对完全多视图聚类和不完全多视图聚类方法…