bfs
-
显式周期引导的长时序列预测
该研究提出显式周期引导的长期时间序列预测方法,核心包括Periodformer和CycleNet两种模型。Periodformer通过周期注意力机制显式捕捉长期周期性模式,降低计算…
-
面向数据异构与通信高效的联邦大模型优化与应用研究
联邦大模型将联邦学习与大语言模型相结合,遵循“数据不动、模型动”的原则,在无需集中原始数据的前提下,共同训练与优化大模型。该技术能有效破解数据孤岛,为医疗、教育等领域提供隐私安全的…
-
群体认知诊断技术研究
智慧教育系统的不断发展促进了在线学习的用户数量爆炸式增长,对于学生认知水平诊断要求不断提高,群体认知诊断技术能够帮助平台挖掘学习群体的共性需求,增进教学效果。本次学术报告介绍了群体…
-
Wireless Traffic Dataset for Krack and Kr00k Attacks in WPA2
This report centers on the “Wireless Traffic Dataset for KRACK and Kr00k Attacks in …
-
学术论文评审意见生成方法研究
学术论文投稿数量的不断增长带来巨大审稿压力,而人工智能和大数据的发展为学术论文自动化评审提供了契机。本次学术报告介绍了学术论文评审意见生成的两种最新方法,为减轻审稿人负担、提高评审…
-
扩散模型的后门攻击研究
文本-图像生成模型在当今生活中有广泛应用,最新研究表明,这类多模态的生成模型也面临着安全风险,例如对抗样本攻击、成员推理攻击和后门攻击等。本次学术报告介绍了文本-图像生成模型最新的…
-
深度学习模型公平性修复
深度学习模型具有强大的特征提取能力,在决策领域得到广泛应用,但往往产生不公平的预测结果,造成不良的社会影响,现有的公平性修复方法往往会导致准确率下降。本次学术报告介绍了一种新的深度…
-
二进制文件复合数据类型恢复
二进制文件复合类型恢复技术在程序理解、逆向分析和漏洞检测等领域具有关键价值,能够显著提升类型信息还原与代码语义解析的准确性与效率。该技术通过推断和重建结构体、数组等复杂数据类型,有…
-
大模型也不安全-小心信息被泄露
研究大模型隐私泄露攻击,揭示了大模型面临的隐私信息泄露风险。本次学术报告介绍了大模型的应用价值和市场体量,讲述了关于大模型隐私泄露攻击的最新方法,指明了现有的缺陷和未来发展方向。
-
数据集不平衡评估方法
本报告围绕“数据集不平衡程度评估”展开,聚焦于如何科学量化多类数据中的结构性不平衡问题,突破传统以样本比例为核心的评估局限。报告系统回顾了不平衡评估的发展脉络,分析了现有方法在面对…