bfs

  • 强化学习基础与实战

    本报告介绍了强化学习领域基本概念,详细介绍了Q-Learning算法和Deep Q Learning算法的原理,简要梳理了了两种算法的发展脉络,以经典案例windy grid-wo…

    2022年3月28日
    589
  • 高准确率的鲁棒加密恶意流量实时检测方法

    本报告讲述了加密恶意流量检测领域基本概念,通过详细介绍基于频域分析的实时鲁棒恶意流量检测和基于自适应聚类的网络边缘恶意流量分类方法,启发思考通过统计聚类分析来提升加密恶意流量检测算…

    2022年3月21日
    1.1K
  • 文本相似度度量方法

    文本相似度度量是自然语言处理中的一个基础问题,是许多下游任务的基础,如文本分类、信息检索、对话系统、句义标注等。相似度匹配的过程包括了构造特征与度量特征两个基本步骤,其中构造特征是…

    2022年3月13日
    767
  • 基于深度学习的文本分类方法

    在自然语言处理任务中,文本分类旨在将文本文档分类为给定的类别,是一项基础而重要的任务。近年来,深度神经模型由于其表现力和对特征工程的最低要求而在文本分类中越来越受欢迎。然而,将深度…

    2022年3月7日
    502
  • 基于图结构处理的文本生成

    文本生成技术是自然语言处理中一个重要的研究领域,具有广阔的应用前景。传统文本生成的Seq2Seq框架不能有效地利用原始语料中的语义信息,而Graph2Seq模型可以丰富文本的语义知…

    2022年2月28日
    621
  • 基于NLP的软件漏洞检测方法

    随着官方发布的漏洞数量呈现指数的增长趋势,针对漏洞检测技术的研究应运而生。漏洞种类的多样性以及检测方法的单一性导致漏洞检测结果呈现一定的局限性,随着自然语言处理技术的兴起和专家知识…

    2022年2月21日
    1.5K
  • 弱监督技术方法

    当前监督学习技术已经取得了巨大的成功,但是值得注意的是,由于数据标注过程的成本太高,很多任务很难获得如全部真值标签这样的强监督信息。而无监督学习由于学习过程太过困难,它的发展缓慢。…

    2022年2月21日
    648
  • Dropout随机失活

    具有大量参数的深度神经网络是非常强大的机器学习系统。然而,在这样复杂的网络中,过拟合的问题难以解决。复杂的网络结构和缓慢的运行速度导致我们很难在测试时通过组合许多不同大型神经网络的…

    2022年1月21日
    491
  • 深度生成模型

    近年,机器学习已经在计算机视觉、语音识别、语音合成以及自然语言处理(NLP)领域取得了突破性成果,在机器翻译和情感计算中展现的能力也颇令人期待。 其中机器学习方法可以分为生成方法(…

    2022年1月14日
    728
  • 神经网络模型的覆盖测试

    人工智能系统在近年来取得丰硕的成果,其中神经网络在自动驾驶领域等图像处理方向应用较为广泛。但是神经网络存在安全隐患,容易受到攻击导致决策错误,比如对抗样本攻击和后门攻击。如何测试神…

    2022年1月4日
    728