bfs
-
强化学习中的信用分配
本报告围绕强化学习中的“信用分配”难题,系统梳理了延迟/稀疏奖励场景下如何精准识别关键动作的研究脉络, 介绍LaRe与VinePPO两项新工作 ,分别利用大模型先验与无偏采样提升奖…
-
从生成机制探索机生文本检测新方法
随着大语言模型生成文本规模持续扩大,跨模型、跨领域场景下的机生文本检测面临泛化性不足的挑战。本次学术报告从文本生成机制出发,系统介绍了基于前文记忆建模与多范围写作策略差异的代表性方…
-
缺失模态的情绪变化识别
随着多模态情绪识别应用不断发展,真实场景中的模态缺失问题对模型鲁棒性提出了挑战。本次学术报告聚焦缺失模态下的情绪变化识别,介绍了基于单模态专家融合与难度感知课程学习的代表性方法,为…
-
面向联邦基础模型的安全评测与防御方法研究
聚焦IoRT/IIoT场景下联邦基础模型的安全评测与防御,概述联邦微调范式与隐蔽后门风险;重点介绍SecFFT频域一致性检测机制与长期意图建模相结合实现安全加权聚合,以及FL-ID…
-
基于深度学习的NIDS对抗样本检测与防御技术
随着网络攻击日益复杂化,基于深度学习的入侵检测系统面临严峻的对抗性威胁。本次学术报告聚焦对抗样本的攻防研究,介绍了一种提升模型自身抗攻击能力的防御方法,以及一种能够有效甄别隐蔽对抗…
-
模型窃取防御:从被动溯源到主动防御
本次学术报告探讨模型窃取防御方法,重点介绍两种前沿防御方案。ModelShield采用自适应鲁棒水印技术,通过查询响应分布自动注入水印,实现被动溯源与版权验证;QUEEN则基于查询…
-
缓解多模态大语言模型的幻觉问题
该研究针对多模态大语言模型生成内容与输入信息不符的“幻觉”问题,提出两种缓解方法:OPERA在推理阶段通过惩罚过信任与回溯重分配机制减少幻觉;HACL在训练阶段引入幻觉文本作为困难…
-
大模型在微调阶段的后门攻击
随着大语言模型的快速发展与广泛应用,其安全问题日益凸显,后门攻击便是主要威胁之一。本次报告介绍了两种针对大模型微调阶段的后门攻击方法,它们分别通过确定目标生成条件和改变Token,…
-
对抗样本攻防的两种奇思妙想
围绕图像对抗样本攻防这一核心主题,介绍以 Block Shuffle & Rotation(BSR) 为代表的迁移攻击增强策略,以及以 Delta Data Augment…
-
基于因果推理的对抗防御方法
基于因果推理的对抗防御方法通过因果干预、特征解耦与不变性学习,识别并强化数据中的因果特征,抑制模型对伪相关与“捷径特征”的依赖,从而在机理上增强模型的泛化能力和抗干扰能力,使其在遭…