bfs

  • 基于深度学习的NIDS对抗样本检测与防御技术

    随着网络攻击日益复杂化,基于深度学习的入侵检测系统面临严峻的对抗性威胁。本次学术报告聚焦对抗样本的攻防研究,介绍了一种提升模型自身抗攻击能力的防御方法,以及一种能够有效甄别隐蔽对抗样本的检测方法,为构筑下一代鲁棒NIDS奠定了坚实基础。

    2025 年 12 月 15 日 4 0
  • 模型窃取防御:从被动溯源到主动防御

    本次学术报告探讨模型窃取防御方法,重点介绍两种前沿防御方案。ModelShield采用自适应鲁棒水印技术,通过查询响应分布自动注入水印,实现被动溯源与版权验证;QUEEN则基于查询敏感度分析与输出扰动机制,动态反制攻击,实现主动防御。

    2025 年 12 月 8 日 34 0
  • 缓解多模态大语言模型的幻觉问题

    该研究针对多模态大语言模型生成内容与输入信息不符的“幻觉”问题,提出两种缓解方法:OPERA在推理阶段通过惩罚过信任与回溯重分配机制减少幻觉;HACL在训练阶段引入幻觉文本作为困难负样本进行对比学习,提升表示对齐能力。两种方法均显著降低幻觉率,并保持模型性能,为构建更可靠的多模态AI系统提供关键技术路径。

    2025 年 12 月 1 日 110 0
  • 大模型在微调阶段的后门攻击

    随着大语言模型的快速发展与广泛应用,其安全问题日益凸显,后门攻击便是主要威胁之一。本次报告介绍了两种针对大模型微调阶段的后门攻击方法,它们分别通过确定目标生成条件和改变Token,提升攻击的隐蔽性与有效性。

    2025 年 11 月 24 日 85 0
  • 对抗样本攻防的两种奇思妙想

    围绕图像对抗样本攻防这一核心主题,介绍以 Block Shuffle & Rotation(BSR) 为代表的迁移攻击增强策略,以及以 Delta Data Augmentation(DDA)为代表的基于扰动空间的数据增强防御。通过分析其理论动机、核心算法及实验表现,探讨模型注意力一致性、扰动多样性与鲁棒性提升之间的关联。

    2025 年 11 月 17 日 74 0
  • 基于因果推理的对抗防御方法

    基于因果推理的对抗防御方法通过因果干预、特征解耦与不变性学习,识别并强化数据中的因果特征,抑制模型对伪相关与“捷径特征”的依赖,从而在机理上增强模型的泛化能力和抗干扰能力,使其在遭遇对抗性扰动或数据分布偏移时,能表现出更稳定的性能

    2025 年 11 月 10 日 50 0
  • 显式周期引导的长时序列预测

    该研究提出显式周期引导的长期时间序列预测方法,核心包括Periodformer和CycleNet两种模型。Periodformer通过周期注意力机制显式捕捉长期周期性模式,降低计算复杂度;CycleNet利用可学习循环队列提取全局周期成分,并对残差进行预测。两者均通过显式周期性建模有效提升预测精度与效率,在多项基准测试中表现优异,尤其适用于电力、能源等周期性…

    2025 年 11 月 3 日 58 0
  • 面向数据异构与通信高效的联邦大模型优化与应用研究

    联邦大模型将联邦学习与大语言模型相结合,遵循“数据不动、模型动”的原则,在无需集中原始数据的前提下,共同训练与优化大模型。该技术能有效破解数据孤岛,为医疗、教育等领域提供隐私安全的个性化智能服务,驱动产业智能升级。

    2025 年 10 月 27 日 151 0