大语言模型的越狱攻击

主要探讨大语言模型的越狱攻击,阐述其研究背景、意义,历史与现状。而后涉及 EnDec和 ActorAttack 算法讲解,包含算法简介,以及算法的具体流程,通过实验对比展示其性能,总结了各自算法的特点、贡献与不足,展望未来发展方向。

大语言模型越狱攻击-贺晨阳-2024.12.1

原创文章,作者:bfs,如若转载,请注明出处:https://www.isclab.org.cn/2024/12/19/%e5%a4%a7%e8%af%ad%e8%a8%80%e6%a8%a1%e5%9e%8b%e7%9a%84%e8%b6%8a%e7%8b%b1%e6%94%bb%e5%87%bb/

(0)
bfsbfs
上一篇 2024年12月19日 下午8:02
下一篇 2024年12月19日 下午8:41

相关推荐

  • 多标签学习

    每天都有大量的数据生成,这导致人们越来越需要新的努力来应对大数据给多标签学习带来的巨大挑战。例如,极端多标签分类是一个活跃且快速发展的研究领域,它处理的分类任务具有极其大量的类别或…

    2021年8月22日
    982
  • 虚拟化安全监控技术小结

    Virtualization-based Monitoring Virtualization-based Monitoring 是指利用虚拟化技术对上层虚拟机进行监控或者保护。通常…

    2014年11月14日
    1.4K
  • 软件漏洞注入技术

    随着计算机技术的发展,漏洞威胁问题已然日渐严峻,高效、准确的漏洞检测技术对于漏洞的发现和防护都至关重要,但目前常用的检测算法面临漏洞数据集少、信息不准确、构建成本高等问题,所以一个…

    2023年9月27日
    738
  • 鲁棒性认证方法

    随着对抗样本的危险性日益凸显,提高模型的鲁棒性成为研究的主要方向之一,然而,在评估鲁棒性方面还没有统一的标准,使得不同的防御方法之间对比存在很大的困难。

    2021年9月13日
    1.3K
  • 元胞自动机原理及其在显著性检测中的应用

          元胞自动机(cellular automata,CA) 是一种时间、空间、状态都离散,空间相互作用和时间因果…

    2018年11月6日
    1.1K
  • 大模型在微调阶段的后门攻击

    随着大语言模型的快速发展与广泛应用,其安全问题日益凸显,后门攻击便是主要威胁之一。本次报告介绍了两种针对大模型微调阶段的后门攻击方法,它们分别通过确定目标生成条件和改变Token,…

    2025年11月24日
    498
  • 对抗式多任务学习

          对抗式多任务学习是针对普通的多任务学习模型在共享特征提取时,可能会被特定任务的特定特征所污染的问题所提出的,…

    2019年8月13日
    1.0K
  • 联邦学习的后门攻击方法

    联邦学习在保证数据安全和隐私的情况下解决了数据孤岛和数据碎片化问题,主要分为横向联邦学习、纵向联邦学习和联邦迁移学习。本次学术报告首先介绍联邦学习的历史现状、分类及应用场景,然后通…

    2022年8月30日
    1.4K
  • 常用距离计算方法

      韩磊 2014/12/25

    2014年12月19日
    695
  • 图嵌入-GraphSAGE

    现在大多数方法都是直推式学习, 不能直接泛化到未知节点。这些方法是在一个固定的图上直接学习每个节点embedding,但是大多情况图是会演化的,当网络结构改变以及新节点的出现,直推…

    2020年7月6日
    1.2K