LLM的强化学习

ChatGPT问世以来,LLM百花齐放,对我们的生活产生了巨大的影响。然而LLM生成的内容存在信息泄露、无中生有等诸多隐患。通过强化学习技术我们可以将生成内容与人类偏好对齐,控制LLM的生成方向。本次学术报告主要讲解了强化学习在LLM中应用的现状,然后在PPO-max算法中对RLHF流程进行分析,并在RL4F算法中拓展其应用场景,最后对强化学习在LLM中的未来发展和功能进行解析。

数据挖掘-学术报告-LLM中的强化学习—让生成内容更加可控-杨宗源

原创文章,作者:bfs,如若转载,请注明出处:https://www.isclab.org.cn/2024/04/03/llm%e7%9a%84%e5%bc%ba%e5%8c%96%e5%ad%a6%e4%b9%a0/

(0)
bfsbfs
上一篇 2024年3月15日 下午3:25
下一篇 2024年4月3日 下午9:00

相关推荐

  • 预训练语言模型GPT3

    为了从网络上海量文本信息提取有价值信息,需要使用计算机处理文本数据,首要任务是将文本转换为计算机可以处理的向量化数据。单词是文本的最小单位,所以需要使用语言模型得到词向量表示成为文…

    2021年2月19日
    1.2K
  • 初识虚拟化技术

    1.虚拟化技术的意义 虚拟化技术已有40多年的历史,它起源于对分时(Time Sharing)系统的需求。   1.1.为什么要使用虚拟化技术 很容易理解,由于不同任务耗…

    2014年10月21日
    1.1K
  • 序列标注模型

    背景知识 序列标注模型被广泛应用于文本处理相关领域,例如分词、词性标注、命名实体识别等方面。现有的序列标注模型主要有HMM,MEMM 以及 CRF,通过对这几种自然语言处理中常用的…

    2015年2月2日
    1.2K
  • 大模型越狱攻击的检测技术

    本次报告围绕大模型越狱攻击的检测技术展开,首先阐述了越狱检测的定义,然后介绍了常见的越狱攻击以及检测技术的研究现状。接着详细介绍了GradSafe和JailGuard两种主流方法,…

    2025年5月8日
    996
  • 大模型赋能的模糊测试用例生成技术

    随着大模型技术的兴起和发展,软件漏洞模糊测试方法在新技术的赋能下,可以实现更好的代码覆盖率和漏洞发现数量。本次学术报告针对结合大模型实现模糊测试用例生成的方法,介绍了Fuzz4Al…

    2024年9月3日
    1.0K
  • 视频深度伪造及检测技术——攻与防

    摘要:本报告介绍了视频深度伪造的基本算法,针对算法中存在的3个问题,重点讲述了在小样本条件下的域迁移学习生成伪造视频,并通过攻防对抗的概念引出了伪造视频检测算法,阐明针对伪造视频中…

    2023年2月20日
    966
  • 图神经网络的反事实解释方法

    图神经网络模型的可解释性对于建立用户与决策模型之间的信任关系至关重要,为了安全、可信地部署图神经网络模型,需要提高图神经网络模型的可解释性和透明性。本次报告为大家介绍图神经网络反事…

    2024年6月3日
    633
  • 强化学习基础与实战

    本报告介绍了强化学习领域基本概念,详细介绍了Q-Learning算法和Deep Q Learning算法的原理,简要梳理了了两种算法的发展脉络,以经典案例windy grid-wo…

    2022年3月28日
    719
  • Using Sentiment Representation Learning to Enhance Gender Classification for User Profiling

          用户画像意味着利用机器学习技术来预测用户的属性,例如人口统计学属性,兴趣属性,偏好属性等。它是精确营销的强大…

    2018年12月17日
    527
  • 基于知识库的命名实体识别

          基于统计的命名实体识别方法根据特征的获取方式,有神经网络和特征工程两个研究方向,实践表明来自知识库的词典特征…

    2019年7月18日
    918