LLM的强化学习

ChatGPT问世以来,LLM百花齐放,对我们的生活产生了巨大的影响。然而LLM生成的内容存在信息泄露、无中生有等诸多隐患。通过强化学习技术我们可以将生成内容与人类偏好对齐,控制LLM的生成方向。本次学术报告主要讲解了强化学习在LLM中应用的现状,然后在PPO-max算法中对RLHF流程进行分析,并在RL4F算法中拓展其应用场景,最后对强化学习在LLM中的未来发展和功能进行解析。

数据挖掘-学术报告-LLM中的强化学习—让生成内容更加可控-杨宗源

原创文章,作者:bfs,如若转载,请注明出处:https://www.isclab.org.cn/2024/04/03/llm%e7%9a%84%e5%bc%ba%e5%8c%96%e5%ad%a6%e4%b9%a0/

(0)
bfsbfs
上一篇 2024年3月15日 下午3:25
下一篇 2024年4月3日 下午9:00

相关推荐

  • 成员推理攻击和防御

    机器学习已经演化为了一种服务模式,即机器学习即服务模式。互联网公司或提供模型训练接口,或提供模型预测接口给用户以提供相应的服务。但是,在提供服务的整个过程中,机器学习模型不可避免的…

    2021年6月24日
    2.4K
  • 降维算法(二)—— MDS

    2014年10月22日
    502
  • 深度神经网络对抗样本防御方法

    近年来深度学习技术不断突破,极大促进了人工智能行业的发展,但人工智能模型本身易受到对抗攻击从而引起严重后果。对原始样本有针对性地加入微小扰动,该扰动不易被人眼所察觉,但会导致人工智…

    2021年1月4日
    1.2K
  • 假设检验(hypothesis testing)

      假设检验是数理统计学中根据一定假设条件由样本推断总体的一种方法,其基本思想是应用小概率原理。在假设检验中常见的P值是进行检验决策的依据之一,反映某一事件发生的可能性大小。比较常…

    学术报告 2017年10月13日
    898
  • AI测试:历史与发展

    本报告重点讲解了AI测试的发展历史,从2007年Murphy等人认为AI系统是不可测试到后续变形测试、差分测试、覆盖测试、突变测试等传统测试方法的引入,再到正确性、鲁棒性、隐私性、…

    2022年8月23日
    857
  • 准确高效地检测安卓APP中的第三方库

    本次报告主要讲述了如何准确高效地检测安卓APP内的第三方库。介绍了第三方库检测的基本概念和主要困难,解释了准确高效检测第三方库的意义,详细讲解布隆过滤器的原理与使用方法、基于熵的代…

    2023年7月27日
    554
  • 弱监督技术方法

    当前监督学习技术已经取得了巨大的成功,但是值得注意的是,由于数据标注过程的成本太高,很多任务很难获得如全部真值标签这样的强监督信息。而无监督学习由于学习过程太过困难,它的发展缓慢。…

    2022年2月21日
    768
  • 多标签学习

    每天都有大量的数据生成,这导致人们越来越需要新的努力来应对大数据给多标签学习带来的巨大挑战。例如,极端多标签分类是一个活跃且快速发展的研究领域,它处理的分类任务具有极其大量的类别或…

    2021年8月22日
    986
  • 聚类知识及其初始化问题

    聚类学习作为机器学习中最为常用的算法,已经广泛的应用于许多领域。本文主要介绍聚类的一些基础知识,并且以概率聚类模型为例,并讲解一个聚类算法:基于t分布的熵惩罚最大期望算法,使大家对…

    2019年8月24日
    820
  • 特征选择方法

          特征选择是指为了构建模型而选择相关特征子集的过程,目的是去除特征中的无关特征和冗余特征,进而达到简化模型,增…

    2018年5月28日
    926