强化学生个性的知识追踪

知识追踪是缓解基础教育普及需求和严重不足的教师数量之间矛盾的一个关键途径。目前,提高知识追踪的个性化水平是研究重点之一。本次报告介绍了两类强化学生个性的知识追踪技术,包括额外个性化特征和动态模型参数。

强化学生个性的知识追踪-吴松凌

原创文章,作者:bfs,如若转载,请注明出处:https://www.isclab.org.cn/2023/12/27/%e5%bc%ba%e5%8c%96%e5%ad%a6%e7%94%9f%e4%b8%aa%e6%80%a7%e7%9a%84%e7%9f%a5%e8%af%86%e8%bf%bd%e8%b8%aa/

(0)
bfsbfs
上一篇 2023年12月27日 下午5:29
下一篇 2023年12月27日 下午5:39

相关推荐

  • 大语言模型调研

    针对大语言模型展开调研,介绍大语言模型发展背景和研究现状,通过讲解LLaMA2模型的预训练和微调步骤,全面讲解大语言模型的训练过程,随后对越狱攻击大语言模型的方法进行研究,通过讲解…

    2024年1月3日
    862
  • 图嵌入-GraphSAGE

    现在大多数方法都是直推式学习, 不能直接泛化到未知节点。这些方法是在一个固定的图上直接学习每个节点embedding,但是大多情况图是会演化的,当网络结构改变以及新节点的出现,直推…

    2020年7月6日
    1.3K
  • 基于T-Closeness的微聚集数据脱敏算法

    大数据时代的到来,同时也带来了隐私、敏感信息保护方面的棘手难题。数据脱敏措施层出不穷,K-Anonymity,L-Diversity,T-Closeness,以及相结合的微聚集算法…

    2021年4月6日
    1.4K
  • 单词级文本对抗攻击

    本报告介绍了单词级文本对抗攻击(Word-Level Attack)的背景和基本原理,展示了在OpenAttack和TextAttack两类开源工具上的测试样例,并分别讲述了基于义…

    2023年5月29日
    1.2K
  • 联邦学习的后门防御方法

    本报告介绍了联邦学习领域后门攻击与防御的基本概念、联邦学习的训练流程,分别聚合规则和聚类规则的后门防御算法进行具体说明,阐述了联邦学习领域后门攻击与防御的发展方向及个人思考。

    2023年4月9日
    1.3K
  • 显式周期引导的长时序列预测

    该研究提出显式周期引导的长期时间序列预测方法,核心包括Periodformer和CycleNet两种模型。Periodformer通过周期注意力机制显式捕捉长期周期性模式,降低计算…

    2025年11月3日
    406
  • 图半监督学习

          图半监督学习是半监督学习中的一种,基于聚类假设和流形假设,利用少量的有标记样本和大量的未标记样本,提高训练得…

    2018年9月3日
    758
  • 软件漏洞检测及其严重性评估

    本报告介绍了漏洞检测的基本方法以及基于漏洞代码的漏洞评估的概念和评估方法。针对一种漏洞检测方式和一种漏洞评估方式进行了深入讲解,并探讨了漏洞检测和评估领域的现状,提出了一些未来发展…

    2023年3月27日
    859
  • 智能体的工具调用攻击

    本报告探讨了大语言模型智能体工具调用机制中的安全漏洞,重点分析了两种新型攻击方法。AMA攻击通过黑盒迭代优化恶意工具的元数据,使其在语义合法的前提下显著提升被智能体选择的概率,在多…

    2026年1月26日
    210
  • 数据样本的质量评估方法

    本报告主要介绍数据样本的质量评估方法。随着数据规模的不断扩大,如何有效评估数据样本的贡献成为提升模型性能和效率的关键问题。报告分析了当前领域内的主要评估方法,讨论了不同评估标准对模…

    2025年2月24日
    837