深度神经网络鲁棒性评估方法

深度学习模型具有高度非线性和特征空间抽象等特性,内部决策逻辑难以解释,导致其实际应用严重受限。本次报告从深度神经网络可解释性的基本概念出发,对常见的解释方法进行简介,并介绍了一篇将后门攻击应用于攻击解释方法的论文。

深度神经网络鲁棒性评估方法-夏志豪

原创文章,作者:bfs,如若转载,请注明出处:https://www.isclab.org.cn/2023/11/30/%e6%b7%b1%e5%ba%a6%e7%a5%9e%e7%bb%8f%e7%bd%91%e7%bb%9c%e9%b2%81%e6%a3%92%e6%80%a7%e8%af%84%e4%bc%b0%e6%96%b9%e6%b3%95-2/

(0)
bfsbfs
上一篇 2023年11月30日 上午10:49
下一篇 2023年11月30日 下午5:48

相关推荐

  • 基于GAN的网络流量对抗样本生成技术

    随着机器学习的发展,机器学习已经广泛应用于入侵检测,但研究发现基于机器学习的检测技术存在安全隐患,极易遭受对抗样本的攻击,为了更好的评估入侵检测系统的鲁棒性,研究网络流量的对抗样本…

    2021年1月10日
    3.1K
  • 注意力机制

          注意力机制应用在encoder-decoder模型中,可以使Decoder根据时刻的不同,让每一时刻的输入都…

    2018年10月8日
    832
  • 图匹配网络

    本次学术报告旨在带领听众完成图匹配网络相关知识入门。首先介绍了图匹配网络的基本概念;随后以GMN和MGMN为例讲解了图匹配网络的两种经典范式,详细阐述了图匹配网络的基本原理和应用场…

    2023年6月19日
    872
  • 走近特定音频识别(之四)—— 训练和识别

    上篇文章介绍了“识别”和“检索”的区别和关系,从这篇开始,我们将从更近的距离接触特定音频识别,本文将向大家介绍特定音频识别系统的基本构成。     一个典型的特定音频识别系统的原理…

    2014年10月28日
    767
  • 人工智能模型的谈忘学习方法

    遗忘学习被称为机器遗忘或取消学习,是指机器学习或深度学习系统中先前获取的知识随着时间推移而退化的现象。本次学习报告的主要讲解了两种人工智能模型的遗忘学习方法,遗忘训练数据中的特定样…

    2024年11月5日
    711
  • 基于GNN的加密流量方法

    本次报告围绕基于GNN的加密流量分类技术展开,首先阐述了基于GNN的加密流量分类的基本概念、研究背景和研究意义,然后介绍了传统加密流量识别方法的特点与优劣势,并介绍了利用GNN进行…

    2025年6月4日
    507
  • 基于深度学习的二进制软件漏洞挖掘

    本次学术报告面向基于深度学习的二进制软件漏洞挖掘,首先定义二进制缺陷检测子任务的基本概念和TIPO,其后介绍模糊测试、符号执行等动态缺陷检测方法,最终具体讲解了三种基于深度学习的二…

    2020年8月2日
    1.6K
  • 基于深度学习的恶意流量检测方法

    近年来,基于机器学习的算法在恶意流量检测领域中越来越流行,但此类算法通常使用浅层模型,在训练之前需要一组专家手工制作的特征来预处理数据。此类方法的主要问题是,在不同类型的场景下,手…

    2020年12月27日
    3.2K
  • 面向攻击溯源的日志处理技术

    日志生成的系统溯源图能够记录实体的依赖关系,通过溯源图的后向跟踪和前向跟踪,可实现攻击的溯源。但是随着溯源深度的增加,上下游实体之间的依赖关系呈现指数级爆炸,无法有效溯源。本次学术…

    2022年8月23日
    1.2K
  • 对抗性扰动下的后门防御方法

    后门防御旨在使用神经元剪枝、知识蒸馏等手段消除模型中隐藏的后门,阻止攻击者使用触发器样本控制深度学习模型的输出。本次学术报告主要讲解了两种以对抗性扰动和后门攻击关系为基础的后门防御…

    2024年1月17日
    1.1K