小样本命名实体识别

在很多场景下,收集大量的有标签的数据是非常昂贵、困难、甚至不可能。因此在特定领域、小语种等缺乏标注资源的情况下,NER 任务往往得不到有效解决。为了解决少量标注数据的命名实体识别,人们开始研究小样本命名实体识别任务。本次报告介绍了小样本命名实体识别的基本概念,常用方法,以及CONTaiNER和COPNER两种方法的算法原理。

小样本命名实体识别-刘小丫

原创文章,作者:bfs,如若转载,请注明出处:https://www.isclab.org.cn/2023/08/30/%e5%b0%8f%e6%a0%b7%e6%9c%ac%e5%91%bd%e5%90%8d%e5%ae%9e%e4%bd%93%e8%af%86%e5%88%ab-2/

(0)
bfsbfs
上一篇 2023年8月20日 下午10:15
下一篇 2023年9月15日 下午9:43

相关推荐

  • 多示例多标记学习

        本次学术报告主要讲解了多示例多标记学习(Multi-Instance Multi-Label learning),主要对多示例多标记…

    学术报告 2018年3月11日
    763
  • 深度神经网络鲁棒性评估方法

    深度学习模型具有高度非线性和特征空间抽象等特性,内部决策逻辑难以解释,导致其实际应用严重受限。本次报告从深度神经网络可解释性的基本概念出发,对常见的解释方法进行简介,并介绍了一篇将…

    2023年11月30日
    909
  • 基于神经网络的源代码表示方法

    简介:神经网络算法在自然语言和计算机视觉等领域取得了快速发展和成熟应用,且在程序分析领域也具有广泛应用,如代码克隆检测、程序分类、漏洞分析和代码搜索等任务。然而不同的程序源代码表示…

    2020年7月19日
    1.4K
  • 从生成机制探索机生文本检测新方法

    随着大语言模型生成文本规模持续扩大,跨模型、跨领域场景下的机生文本检测面临泛化性不足的挑战。本次学术报告从文本生成机制出发,系统介绍了基于前文记忆建模与多范围写作策略差异的代表性方…

    2026年1月5日
    698
  • Boosting Methods

      集成学习是机器学习领域中提升单一模型学习效果的典型方法,而Boosting则是集成学习中常用且效果良好的算法之一。通过将Weak learner巧妙地组合成Strong lea…

    学术报告 2017年9月14日
    854
  • 提高对抗鲁棒性的特征降噪方法

    当深度学习以惊人的准确性执行各种各样任务的同时,在图像分类等领域的深度神经网络却容易受到对抗样本的攻击,从而输出错误的预测结果。本次学术报告首先说明了对抗攻防的主要方法分类和残差网…

    2021年4月19日
    1.3K
  • 网络表示学习-SDNE

          真实的网络结构是高度非线性和复杂的,现有的浅层模型的网络嵌入方法都无法很好地表示更高级的非线性的网络结构。因…

    2019年3月26日
    848
  • 特定安全领域中的对抗样本防御方法

    以深度学习为代表的人工智能技术正在悄然改变人们的生产生活方式,但深度学习模型的部署也带来了一定的安全隐患。对抗样本攻击能使深度学习模型系统进行误判,对各个人工智能应用领域造成了严重…

    2021年8月31日
    1.3K
  • 缺乏先验知识条件下的模型窃取方法

    随着机器学习的快速发展,图像分类、恶意软件识别等多个领域都通过建立机器学习模型解决相应的问题。但由于一些训练出的模型可能涉及训练数据的隐私信息与模型的商业价值,所以其安全性一直备受…

    2021年4月14日
    1.1K
  • 深度神经网络对抗样本防御方法

    近年来深度学习技术不断突破,极大促进了人工智能行业的发展,但人工智能模型本身易受到对抗攻击从而引起严重后果。对原始样本有针对性地加入微小扰动,该扰动不易被人眼所察觉,但会导致人工智…

    2021年1月4日
    1.4K