提高对抗鲁棒性的特征降噪方法

当深度学习以惊人的准确性执行各种各样任务的同时,在图像分类等领域的深度神经网络却容易受到对抗样本的攻击,从而输出错误的预测结果。本次学术报告首先说明了对抗攻防的主要方法分类和残差网络的特点,然后重点讲解了一种提高对抗鲁棒性的特征降噪方法,最后介绍了对抗样本的应用领域。

提高对抗鲁棒性的特征降噪方法-于浩淼

原创文章,作者:bfs,如若转载,请注明出处:https://www.isclab.org.cn/2021/04/19/%e6%8f%90%e9%ab%98%e5%af%b9%e6%8a%97%e9%b2%81%e6%a3%92%e6%80%a7%e7%9a%84%e7%89%b9%e5%be%81%e9%99%8d%e5%99%aa%e6%96%b9%e6%b3%95/

(0)
bfsbfs
上一篇 2021年4月14日 下午3:49
下一篇 2021年4月26日 上午10:58

相关推荐

  • 程序的链接

    本次报告介绍了程序链接过程的基本概念,以及静态链接和动态链接中文件的结构和链接过程。基本概念包括程序构建(Build)过程、链接的历史和链接的作用等。链接的主要工作就是处理各个模块…

    2021年3月15日
    974
  • 超图对比学习

    超图对比学习是一种利用超图结构来捕捉节点间复杂关系,并通过对比学习机制来优化节点表示的学习方法。本次报告通过两个算法,从超图增强技术、对比损失形式和对比训练策略三个方面介绍超图对比…

    2024年8月19日
    516
  • 大规模多标签分类方法

    近年来,随着互联网技术的高速发展和数据规模的快速增长、大数据的应用,多标签分类应用场景越来越多,如电子商务中的商品分类、网页标签、新闻标注、蛋白质功能分类、音乐分类、语义场景分类等…

    2020年12月13日
    2.1K
  • 多视图聚类技术

    多视图聚类技术旨在利用不同视图之间信息的互补性和一致性增强模型的鲁棒性,提高聚类准确率。本次报告首先讲述多视图聚类的基本概念,然后结合两篇算法对完全多视图聚类和不完全多视图聚类方法…

    2023年12月27日
    1.2K
  • 深度神经网络模型窃取防御方法

    模型窃取防御技术能够促进深度神经网络的健康发展,推动数据交流与共享。本次报告从大范围的模型窃取防御领域,聚焦到一类算法,从数学公式上对算法进行详细的分析,并对实验结果进行详细解读,…

    2023年9月27日
    737
  • 弱监督技术方法

    当前监督学习技术已经取得了巨大的成功,但是值得注意的是,由于数据标注过程的成本太高,很多任务很难获得如全部真值标签这样的强监督信息。而无监督学习由于学习过程太过困难,它的发展缓慢。…

    2022年2月21日
    674
  • GBDT梯度提升决策树

          梯度提升决策树(GBDT)是集成学习中梯度提升方法(Gradient Boost)与决策树(Decision…

    2018年5月7日
    660
  • 基于行为语义分析的android恶意软件分析方法

    Android恶意软件对社会造成较大危害。为此,本文介绍了一种基于关联行为分析的Android恶意软件检测系统,该方法具有较强的行为表征能力,能有效的应对各种进化变异的恶意软件。

    2019年8月13日
    792
  • 生成扩散模型

    受热力学的启发,扩散模型目前产生了最先进的图像质量:2021年,扩散模型在图像生成方面的效果击败了GAN。除了尖端的生成质量,扩散模型还不需要对抗性训练;在训练效率方面还具有可扩展…

    2022年9月13日
    1.1K
  • 频繁项集算法分析

    一、 什么是频繁项集项集是指事项的集合,而频繁项集就是频繁出现在数据集中的项集,说白了就在数据集中“出现次数足够多”的项集。其中,项集的出现频度是指包含项集的事务的数量,简称为项集…

    2015年6月18日
    1.8K