图嵌入-GraphSAGE

现在大多数方法都是直推式学习, 不能直接泛化到未知节点。这些方法是在一个固定的图上直接学习每个节点embedding,但是大多情况图是会演化的,当网络结构改变以及新节点的出现,直推式学习需要重新训练,很难落地在需要快速生成未知节点embedding的机器学习系统上,本次报告介绍了一种归纳学习图嵌入—GraphSAGE(Graph SAmple and aggreGatE)框架,通过训练聚合节点邻居的函数(卷积层),使GCN扩展成归纳学习任务,对未知节点起到泛化作用。

Graph-Neural-Network-GraphSAGE-周妍汝

原创文章,作者:bfs,如若转载,请注明出处:https://www.isclab.org.cn/2020/07/06/%e5%9b%be%e5%b5%8c%e5%85%a5-graphsage/

(0)
bfsbfs
上一篇 2020年6月27日 下午9:47
下一篇 2020年7月6日

相关推荐

  • 文本生成大模型后门攻击研究

    研究文本生成大模型的后门攻击,揭示了现有文本大模型的后门风险。本次学术报告详细介绍了现有文本生成模型的后门分类方法以及基准数据集,在文本大模型的多个下游任务实现了后门攻击,并总结了…

    2025年3月24日
    993
  • 自步学习

        自步学习(Self-paced Learning)是一种先学习简单样本,后学习复杂样本的迭代算法。它具有很好的健壮性,主要被应用于图…

    学术报告 2018年1月2日
    826
  • 多人协作利器Git

    详细介绍Git的原理、初级和进阶用法

    2020年9月4日
    1.1K
  • 对抗性扰动下的后门防御方法

    后门防御旨在使用神经元剪枝、知识蒸馏等手段消除模型中隐藏的后门,阻止攻击者使用触发器样本控制深度学习模型的输出。本次学术报告主要讲解了两种以对抗性扰动和后门攻击关系为基础的后门防御…

    2024年1月17日
    1.1K
  • 并查集算法及其在约束传递中的应用

    <img src="https://www.isclab.org.cn/wp-content/uploads/2015/06/41.png" alt=&q…

    2015年6月15日
    531
  • 从任务划分就开始与众不同的元学习

    meta-learning即元学习,也可以称为“learning to learn”。常见的深度学习模型,目的是学习一个用于预测的数学模型。而元学习面向的不是学习的结果,而是学习的…

    2022年10月3日
    734
  • MySQL事务机制

          事务是MySQL数据库用户保证一组sql操作的完整性的一种机制,确保一组操作能够全部成功或者全部失败,不会出…

    2018年11月2日
    573
  • 文本风格迁移

    风格迁移是将多种类型风格转换成另一风格,是自然语言处理领域的一个重要问题,表征着文本生成和风格控制技术的发展情况,在大数据时代下的隐私保护等方面起着重要作用。本文主要介绍了文本风格…

    2020年11月10日
    1.4K
  • 关联规则分析相关算法介绍

          关联规则分析是以中基于规则的机器学习算法,也是一种用于知识发现的算法。可以在大数据中发现感兴趣的关系,目的是…

    2018年9月25日
    1.0K