网络嵌入研究方法综述

网络嵌入(Network Embedding)是针对网络中节点进行特征学习的一项新兴的研究任务,它旨在将网络中的节点表示成低维、实值、稠密的向量形式,使得得到的向量形式可以在向量空间中具有表示以及推理的能力,从而运用到社交网络中常见的应用中,如节点分类、链接预测等。本次学术报告主要讲述网络嵌入的研究发展过程,首先介绍了图嵌入的一些基本概念,然后着重介绍了3个经典的网络嵌入算法,最后讲述了网络嵌入技术的应用领域和未来的研究方向。

文本安全组-学术报告-网络嵌入研究方法综述-李新帅-2020-03-22

原创文章,作者:bfs,如若转载,请注明出处:https://www.isclab.org.cn/2020/03/23/%e7%bd%91%e7%bb%9c%e5%b5%8c%e5%85%a5%e7%a0%94%e7%a9%b6%e6%96%b9%e6%b3%95%e7%bb%bc%e8%bf%b0/

(0)
bfsbfs
上一篇 2020年3月23日 上午11:32
下一篇 2020年3月29日 下午8:46

相关推荐

  • 聚类知识及其初始化问题

    聚类学习作为机器学习中最为常用的算法,已经广泛的应用于许多领域。本文主要介绍聚类的一些基础知识,并且以概率聚类模型为例,并讲解一个聚类算法:基于t分布的熵惩罚最大期望算法,使大家对…

    2019年8月24日
    807
  • 无监督关键词提取方法介绍

    关键词提取技术是通过计算机程序从文档中自动提取重要性和主题性的词或短语的自动化技术,该技术在图书馆学、情报学和自然语言处理等领域应用广泛。目前关键词提取技术主要分为无监督和有监督这…

    2020年3月16日
    1.8K
  • 人工智能系统安全综述

    人类正在经历着由深度学习技术推动的人工智能浪潮,它为人类生产和生活带来了巨大的技术革新。然而,以往的机器学习理论大多没有考虑开放甚至对抗的系统运行环境,逐渐暴露出了许多安全和隐私问…

    2020年4月22日
    1.4K
  • 对抗式多任务学习

          对抗式多任务学习是针对普通的多任务学习模型在共享特征提取时,可能会被特定任务的特定特征所污染的问题所提出的,…

    2019年8月13日
    992
  • 数据挖掘

    Bias-Variance trade-off 启发式参数优化算法举例 参数寻优:梯度下降/牛顿下降法 追根溯源 频繁项集算法分析 并查集算法及其在约束传递中的应用 Floyd解决…

    学术报告 2014年10月18日
    902
  • 动态网络嵌入方法研究

    传统的网络表示一般使用高维的稀疏向量,但是局限在于难以度量节点间的相似性,而一般的静态网络嵌入方法,忽略网络的动态演化过程,因此提出了基于动态网络的嵌入方法学习。本次将基于深度自编…

    2021年6月14日
    887
  • 文本分类硬标签黑盒模型的对抗样本生成方法研究

    研究文本分类硬标签黑盒模型的对抗样本生成方法,分析模型的潜在安全风险,为加强模型鲁棒性提供方向。本次学习报告讲解了文本分类模型对抗样本生成方法的总体状况,并介绍了关于文本分类硬标签…

    2024年11月27日
    514
  • 基于图的课程推荐方法

    课程推荐在人机协同、个性化学习平台等智能教育系统中具有重要价值,显著提升了模型对用户兴趣动态变化的建模能力与推荐效果。本次报告将介绍课程推荐任务,分析其研究背景与应用意义,并重点讲…

    2025年4月22日
    434
  • 预训练语言模型GPT3

    为了从网络上海量文本信息提取有价值信息,需要使用计算机处理文本数据,首要任务是将文本转换为计算机可以处理的向量化数据。单词是文本的最小单位,所以需要使用语言模型得到词向量表示成为文…

    2021年2月19日
    1.2K
  • 面向操作系统的模糊测试

    本报告主要介绍了关于面向操作系统的模糊测试方法,探讨了操作系统漏洞挖掘的挑战与常见漏洞类型,详细介绍了模糊测试中的基本概念、常用方法以及两种前沿的Linux内核模糊测试技术ACTO…

    2025年2月9日
    664