对抗环境强化学习

强化学习(Reinforcement learning ,RL )是机器学习领域之一,研究如何通过一系列的顺序决策来达成一个特定目标。本次报告从强化学习的基本框架开始,介绍了强化学习的基本思想;介绍了强化学习算法的三种主要类型:基于策略梯度(Policy Based)、基于值函数(Value Based)和基于模型(Model Based)的算法,并对其中基于值函数的一种经典算法Q-Learning的基本原理进行了详细说明;最后,介绍了一种对抗环境强化学习的算法。

2组-学术报告PPT-对抗环境强化学习-王逸洲-2019.12.08

原创文章,作者:admin,如若转载,请注明出处:https://www.isclab.org.cn/2019/12/17/%e5%af%b9%e6%8a%97%e7%8e%af%e5%a2%83%e5%bc%ba%e5%8c%96%e5%ad%a6%e4%b9%a0/

(0)
adminadmin
上一篇 2019年11月14日 下午2:47
下一篇 2019年12月18日 下午12:02

相关推荐

  • 数据挖掘中的数据清洗方法

          数据清洗是数据挖掘工作中很重要的一部分工作,目的是解决数据的质量问题,将“脏”数据变成标准的、干净的数据,更…

    2018年5月14日
    1.0K
  • XSS跨站脚本攻击

          XSS攻击是客户端脚本安全中的头号大敌,多次位列OWASP TOP 10榜首,严重威胁到web网络安全。XS…

    2018年6月25日
    771
  • 预训练在NLP的发展

    自从深度学习火起来后,预训练过程就是做图像或者视频领域的一种比较常规的做法,有比较长的历史了,而且这种做法很有效,能明显促进应用的效果。那预训练在自然语言处理中优势怎样发展起来的呢…

    2019年10月20日
    839
  • 基于图结构处理的文本生成

    文本生成技术是自然语言处理中一个重要的研究领域,具有广阔的应用前景。传统文本生成的Seq2Seq框架不能有效地利用原始语料中的语义信息,而Graph2Seq模型可以丰富文本的语义知…

    2022年2月28日
    748
  • 基于Transformer的时间序列分析

    本次报告主要从Transformer框架入手,介绍基于Transformer模型的时间序列分析方法。针对Transformer模型的位置嵌入、注意力机制、模型架构三个方向在时间序列…

    2023年6月17日
    886
  • 二进制代码反编译技术

    二进制代码反编译技术在漏洞检测、恶意代码分析等逆向工程领域中具有重要应用,显著提升了全检安全分析的效率与深度。该技术有助于高效理解和重构二进制程序,支持其修复、维护与再开发。本次报…

    2025年4月9日
    783
  • 自动化漏洞挖掘初探

    摘要:本报告介绍了web漏洞挖掘中的基本概念,实战通用方案及相关思路总结,进一步详细讲解了手工挖掘中存在的痛点问题,重点阐述了前沿自动化漏洞挖掘算法原理,分析其如何弥补手工挖掘的不…

    2023年2月13日
    916
  • 序列标注模型

    背景知识 序列标注模型被广泛应用于文本处理相关领域,例如分词、词性标注、命名实体识别等方面。现有的序列标注模型主要有HMM,MEMM 以及 CRF,通过对这几种自然语言处理中常用的…

    2015年2月2日
    1.1K
  • 联邦学习的后门攻击方法

    联邦学习在保证数据安全和隐私的情况下解决了数据孤岛和数据碎片化问题,主要分为横向联邦学习、纵向联邦学习和联邦迁移学习。本次学术报告首先介绍联邦学习的历史现状、分类及应用场景,然后通…

    2022年8月30日
    1.4K
  • 音频事件识别信道自适应方法研究

    吕英 2015.1.28

    2015年1月28日
    673