对抗式多任务学习

      对抗式多任务学习是针对普通的多任务学习模型在共享特征提取时,可能会被特定任务的特定特征所污染的问题所提出的,提出了一种Shared-Private Model,定义了共享与私有两个特征空间,训练时沿用生成式对抗网络的思想以及正交约束减轻了私有与共享特征空间中的冗余特征。可以应用于多种场景的特征去噪问题。

附件-对抗式多任务学习.pdf

原创文章,作者:admin,如若转载,请注明出处:https://www.isclab.org.cn/2019/08/13/%e5%ad%a6%e6%9c%af%e6%8a%a5%e5%91%8a-%e5%af%b9%e6%8a%97%e5%bc%8f%e5%a4%9a%e4%bb%bb%e5%8a%a1%e5%ad%a6%e4%b9%a0/

(1)
adminadmin
上一篇 2019年7月28日 下午5:00
下一篇 2019年8月13日 上午9:39

相关推荐

  • 网络拓扑混淆技术

    这篇报告围绕网络拓扑混淆技术展开,首先阐述了网络拓扑脆弱性及攻击者推理真实结构的威胁,强调了混淆防御的重要性。报告详细介绍了AntiTomo和EigenObfu两种主流方法,包括各…

    2025年4月27日
    776
  • 人工智能模型的谈忘学习方法

    遗忘学习被称为机器遗忘或取消学习,是指机器学习或深度学习系统中先前获取的知识随着时间推移而退化的现象。本次学习报告的主要讲解了两种人工智能模型的遗忘学习方法,遗忘训练数据中的特定样…

    2024年11月5日
    852
  • 深度生成模型

    近年,机器学习已经在计算机视觉、语音识别、语音合成以及自然语言处理(NLP)领域取得了突破性成果,在机器翻译和情感计算中展现的能力也颇令人期待。 其中机器学习方法可以分为生成方法(…

    2022年1月14日
    960
  • 基于知识库的命名实体识别

          基于统计的命名实体识别方法根据特征的获取方式,有神经网络和特征工程两个研究方向,实践表明来自知识库的词典特征…

    2019年7月18日
    1.0K
  • 大规模多标签分类方法

    近年来,随着互联网技术的高速发展和数据规模的快速增长、大数据的应用,多标签分类应用场景越来越多,如电子商务中的商品分类、网页标签、新闻标注、蛋白质功能分类、音乐分类、语义场景分类等…

    2020年12月13日
    2.4K
  • 基于输入输出扰动的模型窃取防御方法

    模型窃取防御技术能够促进深度神经网络的健康发展,推动数据交流与共享。本次报告从输入输出扰动的角度分析了模型窃取防御方法的框架,从数学角度给出了防御的基本原理以及优缺点,利用防御方法…

    2024年7月21日
    704
  • 使用Python进行并发编程

    本次报告首先介绍了线程、进程的概念,由此讲解操作系统中实现并发编程的三种方式,着重介绍了Python语言下多线程、多进程、协程的编程方法,并结合开发实际,给出了在线程、进程、协程之…

    2020年2月27日
    1.1K
  • XenAccess介绍

    1.Xen虚拟平台 Xen Hypervisor 位于操作系统与硬件之间,为其上层运行的操作系统内核提供虚拟化的硬件环境。Xen采用混合模式(Hybrid Model),因此在Xe…

    2014年10月21日
    1.2K
  • 面向网络应用程序的模糊测试

    本报告介绍了模糊测试中的基本概念及网络应用程序漏洞挖掘发展历史和类型划分等背景知识,对2种基于覆盖引导的灰盒web模糊测试算法进行了具体说明,阐述了网络应用程序漏洞挖掘的发展趋势和…

    2024年5月31日
    550
  • 差分隐私原理及应用

    大数据时代隐私泄露成为了一个严重的问题,大量的个人信息在网上传播。另一方面大数据时代对数据的可用性也有一定的要求。因此当前如何在保障用户的隐私的同时,提供一定的可用性成为一个关键问…

    2020年5月17日
    2.4K