注意力机制

      注意力机制应用在encoder-decoder模型中,可以使Decoder根据时刻的不同,让每一时刻的输入都有所不同,使处理长输入句子时效果更好,会对目前大多数方法进行抽象,可以将其归纳为三个阶段:1.相似度计算;2.归一化;3.加权求和。注意力机制在机器翻译、阅读理解、语义角色标注、关系抽取等自然语言处理领域有广泛的应用。

附件-注意力机制.pdf

原创文章,作者:admin,如若转载,请注明出处:https://www.isclab.org.cn/2018/10/08/%e6%b3%a8%e6%84%8f%e5%8a%9b%e6%9c%ba%e5%88%b6/

(1)
adminadmin
上一篇 2018年9月25日 下午1:02
下一篇 2018年10月17日 下午4:55

相关推荐

  • 基于深度学习的NIDS对抗样本检测与防御技术

    随着网络攻击日益复杂化,基于深度学习的入侵检测系统面临严峻的对抗性威胁。本次学术报告聚焦对抗样本的攻防研究,介绍了一种提升模型自身抗攻击能力的防御方法,以及一种能够有效甄别隐蔽对抗…

    2025年12月15日
    474
  • 时序网络嵌入方法介绍

    网络嵌入(Network Embedding)是针对网络中节点进行特征学习的一项新兴的研究任务,它旨在将网络中的节点表示成低维、实值、稠密的向量形式,使得得到的向量形式可以在向量空…

    2020年11月16日
    1.5K
  • 学术论文评审意见生成方法研究

    学术论文投稿数量的不断增长带来巨大审稿压力,而人工智能和大数据的发展为学术论文自动化评审提供了契机。本次学术报告介绍了学术论文评审意见生成的两种最新方法,为减轻审稿人负担、提高评审…

    2025年9月22日
    554
  • 面向网络应用程序的模糊测试

    本报告介绍了模糊测试中的基本概念及网络应用程序漏洞挖掘发展历史和类型划分等背景知识,对2种基于覆盖引导的灰盒web模糊测试算法进行了具体说明,阐述了网络应用程序漏洞挖掘的发展趋势和…

    2024年5月31日
    538
  • Android应用安全检测

        Android应用在开发和发布初期可能存在各种原因导致的隐藏安全风险,这些安全风险如若不进行检测和修复,会给用户和开发者带来巨大的损…

    学术报告 2017年11月20日
    718
  • 对抗环境下的鲁棒机器学习

    对抗样本的存在表明现代神经网络是相当脆弱的。为解决这一问题,研究者相继提出了许多方法,其中使用对抗样本进行训练被认为是至今最有效的方法之一。 然而,经过对抗训练后神经网络对于正常样…

    2021年1月21日
    1.2K
  • 自步学习

        自步学习(Self-paced Learning)是一种先学习简单样本,后学习复杂样本的迭代算法。它具有很好的健壮性,主要被应用于图…

    学术报告 2018年1月2日
    939
  • 自动化程序缺陷修复及其应用研究

    大型复杂软件系统的高频率开发迭代,导致潜在缺陷数量增加,影响工业控制、交通管理等关键领域正常运转。缺陷修复指生成软件缺陷的修复代码,降低人工成本。研究自动化缺陷修复,能够及时修复软…

    2024年8月18日
    633
  • 单词级文本对抗攻击

    本报告介绍了单词级文本对抗攻击(Word-Level Attack)的背景和基本原理,展示了在OpenAttack和TextAttack两类开源工具上的测试样例,并分别讲述了基于义…

    2023年5月29日
    1.3K