图半监督学习

      图半监督学习是半监督学习中的一种,基于聚类假设和流形假设,利用少量的有标记样本和大量的未标记样本,提高训练得到模型的泛化能力。其主要过程包括:图构建;标记传播;模型训练。其中迭代式标记传播算法是图半监督学习中的重要算法。图半监督学习在包括命名实体识别在内的许多任务中得到应用。

附件-图半监督学习.pdf

原创文章,作者:admin,如若转载,请注明出处:https://www.isclab.org.cn/2018/09/03/%e5%9b%be%e5%8d%8a%e7%9b%91%e7%9d%a3%e5%ad%a6%e4%b9%a0/

(0)
adminadmin
上一篇 2018年8月27日 下午2:22
下一篇 2018年9月17日 下午2:06

相关推荐

  • Linux应用软件安装使用原理扫盲

          Linux系统是大多数人常见但又不熟悉的操作系统,其在软件安装于使用方法上与Windows有较大的差异。本次…

    2018年12月17日
    651
  • 联邦学习的参数更新方法

    联邦学习在为解决数据交换时的信息隐私安全及数据孤岛问题时被提出,现广泛应用的为横向联邦与纵向联邦,本次学术报告介绍了联邦学习的基本思路,并基于横向联邦说明了两种经典的参数更新和合并…

    2021年10月11日
    1.5K
  • 媒体安全

    走近特定音频识别(之一)——让计算机分辨出“这是什么声音” 走进特定音频识别(之二)——计算机是靠什么来分辨声音种类的? 走进特定音频识别(之三)——检索 Vs 识别 走近特定音频…

    学术报告 2014年10月18日
    659
  • Glibc内存管理1

          内存管理是指软件运行时对计算机内存资源的分配和使用的技术。其最主要的目的是如何高效,快速的分配,并且在适当的…

    2019年6月13日
    823
  • 学术论文评审意见生成方法研究

    学术论文投稿数量的不断增长带来巨大审稿压力,而人工智能和大数据的发展为学术论文自动化评审提供了契机。本次学术报告介绍了学术论文评审意见生成的两种最新方法,为减轻审稿人负担、提高评审…

    2025年9月22日
    553
  • 机器学习常用的可解释方法

    可解释性对于建立用户与决策模型之间的信任关系至关重要,提高机器学习模型的可解释性和透明性是机器学习在现实任务中进一步发展和应用的关键。本次报告带大家了解机器学习常用的可解释方法的基…

    2020年10月25日
    1.1K
  • 增强认知诊断结果的可解释性

    认知诊断通过挖掘学习者行为、心理和认知之间的关系,利用学习者的学习数据,对其认知状态进行综合评估和诊断,其输出结果,即学生对于不同知识概念的熟练程度应与实际情况相符,具有高度的可解…

    2024年10月17日
    757
  • 联邦学习及其后门攻击方法初探

    本次报告对联邦学习及其后门攻击方法展开介绍,阐述了联邦学习的发展脉络和三大主要框架,介绍了联邦学习安全性问题及后门攻击分类方法,重点讲解经典的集中式/分布式联邦后门攻击方法,启发思…

    2022年5月16日
    1.3K
  • 注意力机制

          注意力机制应用在encoder-decoder模型中,可以使Decoder根据时刻的不同,让每一时刻的输入都…

    2018年10月8日
    944
  • 面向恶意软件检测系统的对抗样本攻击

    当下投入使用的恶意软件检测系统日益增多,但同时还带来了大量的安全问题,如何有效地提高恶意软件检测系统的鲁棒性变成当下重要的课题。在这里,从攻击者的角度入手,面向恶意软件检测系统,着…

    2020年5月24日
    1.9K