特征选择方法

      特征选择是指为了构建模型而选择相关特征子集的过程,目的是去除特征中的无关特征和冗余特征,进而达到简化模型,增强可解释性;减轻维度灾难;提高训练效率;改善通用性等效果。本次报告从特征选择基本框架入手,详细介绍了三种常见搜索策略以及过滤、包装、嵌入三种评价方法。

附件-特征选择方法.pdf

原创文章,作者:admin,如若转载,请注明出处:https://www.isclab.org.cn/2018/05/28/%e7%89%b9%e5%be%81%e9%80%89%e6%8b%a9%e6%96%b9%e6%b3%95/

(0)
adminadmin
上一篇 2018年5月21日 上午10:03
下一篇 2018年6月10日 下午8:19

相关推荐

  • 网络表示学习

          这次报告讲解了网络表示学习的基本概念,对LINE算法的原理进行了深入讲解,并对网络表示学习算法的应用场景做了…

    2018年9月17日
    550
  • 二进制代码相似性检测技术

    二进制函数相似性分析在1-Day漏洞检测、代码克隆检测、恶意软件检测、软件剽窃检测和自动软件修复等多个应用领域中具有广泛的应用。本次学术报告主要讲解了二进制代码相似性检测技术的基本…

    2024年10月17日
    745
  • Wireless Traffic Dataset for Krack and Kr00k Attacks in WPA2

    This report centers on the “Wireless Traffic Dataset for KRACK and Kr00k Attacks in …

    2025年9月28日
    283
  • 关系抽取之远程监督

    远程监督方法用于关系抽取任务,会给数据集带来噪声样本,为此,本文介绍了两种基于多示例学习的去噪方法,能够有效的去除训练集中存在的噪声样本。

    2019年8月24日
    735
  • 二进制代码开源成分分析

    二进制代码-源代码匹配是信息安全领域的重点研究方向之一。在给定二进制代码的情况下,逆向分析研究人员希望找到它对应的源代码,从而提升逆向分析的效率和准确率。但由于源代码和二进制代码的…

    2022年6月27日
    1.3K
  • 动态网络嵌入

    许多真实世界的网络不是静态的而是处于不断进化的状态,随着网络的不断进化,一方面新节点需要被表示,另一方面,原始节点的嵌入表示就变得陈旧,需要被不断更新。本次学术报告首先介绍了动态网…

    2020年4月7日
    1.1K
  • 网络表示学习-Deepwalk

          网络表示是衔接网络原始数据和网络应用任务的桥梁。网络表示学习算法负责从网络数据中学习得到网络中每个节点的向量…

    2019年3月18日
    789
  • DNN模型水印及其鲁棒性评估

    模型水印技术是一种利用特定信息认证保护模型知识产权的方法。本次报告分析了深度学习领域现有的模型水印嵌入方法,从性能鲁棒性和稳定鲁棒性两方面讲述模型水印鲁棒性评估方法,并以实例分析和…

    2023年11月30日
    737
  • 对抗样本攻防的两种奇思妙想

    围绕图像对抗样本攻防这一核心主题,介绍以 Block Shuffle & Rotation(BSR) 为代表的迁移攻击增强策略,以及以 Delta Data Augment…

    2025年11月17日
    345
  • 机器学习中的非凸优化

          机器学习模型可化简为求解一个目标函数/损失函数的最优化问题,根据优化目标及约束的不同,可划分为凸优化(Con…

    2019年6月24日
    1.5K