Web应用模糊测试技术

    模糊测试是一种通过提供非预期的输入并监视异常结果来发现软件故障的方法。Web应用对于软件提供商和终端用户都具有优越性,针对Web应用的模糊测试不仅可以发现Web应用自身的漏洞,而且可以发现其底层任何构建中存在的漏洞,包括可能和Web应用集成在一起的Web服务器和数据库服务器。

附件-Web应用模糊测试技术.pdf

原创文章,作者:admin,如若转载,请注明出处:https://www.isclab.org.cn/2017/11/13/web%e5%ba%94%e7%94%a8%e6%a8%a1%e7%b3%8a%e6%b5%8b%e8%af%95%e6%8a%80%e6%9c%af/

(0)
adminadmin
上一篇 2017年11月11日
下一篇 2017年11月18日

相关推荐

  • 动态规划探究

          动态规划是用来解决多阶段决策过程最优化问题的一种方法,它的适用问题一般需要具备2个要素ー最优子结构与重叠子问…

    2018年10月22日
    866
  • 面向数据异构与通信高效的联邦大模型优化与应用研究

    联邦大模型将联邦学习与大语言模型相结合,遵循“数据不动、模型动”的原则,在无需集中原始数据的前提下,共同训练与优化大模型。该技术能有效破解数据孤岛,为医疗、教育等领域提供隐私安全的…

    2025年10月27日
    457
  • 偷走你的训练数据:模型反演攻击方法研究

    通过模型反演攻击方法研究,验证了模型训练数据面临泄露风险的问题,并希望以此促进对应防御手段的发展。本次学术报告介绍了模型反演攻击方法的相关知识,并聚焦于两个经典的白盒和黑盒攻击方法…

    2024年2月27日
    1.1K
  • 面向NIDS的流量对抗样本检测

    在AI攻击复杂性和密集性不断提升的大背景下,ML-NIIDS面临巨大挑战,其中流量对抗样本严重威胁其安全稳定。本次报告从NIDS的迭代发展,聚焦到对抗性安全威胁,再引出主流流量对抗…

    2023年10月23日
    786
  • 特定安全攻防场景中的对抗样本生成方法

    最新的特定安全攻防场景可以细化为两个研究方向:匿名通信网络的网站指纹防御和僵尸网络的域名生成,以此来介绍对抗样本在防御任务和攻击任务中的应用。网站指纹攻击可以从网站中提取流量模式,…

    2021年7月26日
    1.2K
  • 人工智能模型的公平性测试——既要公平,也要正确

    人工智能技术在决策系统等领域发挥了重要作用。用于模型训练的数据集中含有显示或者隐式的敏感属性,模型往往会利用敏感属性的特征做出决策,导致人工智能模型在公平性方面出现偏差,产生严重的…

    2025年3月31日
    671
  • 机器学习模型后门攻击检测

    本次学术报告简要介绍了人工智能系统面临的各种安全威胁,通过将对抗样本与后门攻击进行多方面比较,从而引入了机器学习模型后门攻击的原理和检测方法,以及后门攻击技术的应用领域。

    2021年8月22日
    1.3K
  • 层次多标签文本分类方法

    随着互联网技术的高速发展和数据规模的快速增长,层次多标签分类应用场景越来越多,如文献组织、新闻标注、蛋白质功能分类等。层次多标签文本分类是多标签分类下的子任务,标记每个给定文本与最…

    2022年6月6日
    1.2K
  • 深度学习系统的自动化测试简介

    深度学习(DL)在图像分类、语音识别等领域达到或超过了人类水平的性能,且被广泛应用于安全关键领域中(自动驾驶、恶意软件检测等)。然而一些原因(如训练数据偏差、模型过拟合或欠拟合),…

    2020年7月12日
    1.4K
  • 源代码漏洞检测

    本次学术报告对实验室以往在源代码漏洞检测方向的积累做一个总结,展望未来的发展方向,从技术和应用两个视角审查当前源代码漏洞检测面临的问题。进一步从泛化性、细粒度漏洞检测两个方面进行论…

    2023年5月15日
    1.0K