层次聚类算法

对聚类算法有一点点入门的时候就知道,几乎所有的“平面型”聚类算法都有一个共同的弱点-难以确定类别数(聚类停止条件),而层次聚类在一定程度上解决了这个问题(它算一种比较古老比较通用的聚类算法吧)。谈到层次这个词,很容易想象到聚类的过程是线性分阶段进行的。

1. 层次聚类两种基本方法:凝聚的和分裂的

  • 凝聚的:从点作为个体簇开始,每一步合并两个最接近的簇。这里需要定义簇的邻近性概念,如图所示。

层次聚类算法

  • 分裂的:从包含所有点的某个簇开始,每一步分裂一个簇,直到仅剩下单个点簇。这种情况比较复杂,我们需要确定每一步分裂哪个簇,以及如何分裂。

层次聚类算法

2. 常用的基于凝聚的层次聚类

下面探讨两个问题:

1) 定义簇之间的邻近性(需要注意的是两个点的距离可以根据自己的需要去定义,这里说的是如何根据簇内多个点与其他点或者簇计算两个簇之间的邻近性)

源于簇的基于图的术语,有MIN、MAX、和组平均三种方法。MIN定义簇之间的邻近度为不同簇的两个最近的点之间的邻近度(图的术语表示:不同的结点子集中两个结点之间的最短边)。MAX取不同簇中两个最远的点之间的邻近度。通常我们使用单链(single link)和全链(complete link)来分别表示这两种方法。组平均定义簇邻近度为取不同簇的所用点对邻近度的平均值(平均变长)。三种方法如图所示。

层次聚类算法

当然,簇也可用质心代表,这样邻近度的定义为质心之间的距离就更加自然。还有一种方法Ward,该方法试图最小化点到其簇质心的距离的平方和。

2) 时间和空间复杂性

需要存储m2/2个邻近度,其中m是数据点的个数。因此空间复杂度为O(m2)。

需要O(m2)时间计算邻近度矩阵,之后步骤3和4涉及m-1次迭代,如果某个簇到其他所有簇的距离存放在一个有序表或堆中,则查找两个最近簇的开销可能为O(m-i+1).总时间为O(m2logm)。

3. 问题及优缺点

层次聚类的主要问题主要包括

1) 缺乏全局目标函数,使用各种标准在每一步局部地确定哪些簇应当合并,成功避开了解决困难的组合优化问题。但是这样的方法没有局部极小问题或很难选择初始点。

2) 处理不同大小簇的能力,若想平等地对待不同大小的簇,必须赋予不同簇中的点不同的权值。

3) 合并决策是不可逆的,一旦做出决策,就不能撤销了。

优点与缺点:

比较适合那些需要层次结构的应用,通常情况下,层次聚类会产生较高质量的聚类结果并可以根据邻近度阈值等相关指标确定聚类个数。然而计算量和存储代价是昂贵的,高维数据可能会出现较大问题。由于是不可逆的,对于噪声比较敏感。有些研究先使用其他聚类算法进行部分聚类,然后利用之前聚好的簇再进行层次聚类往往可以解决上述问题。

 

张晗

2015.1.28

原创文章,作者:admin,如若转载,请注明出处:https://www.isclab.org.cn/2015/01/28/%e5%b1%82%e6%ac%a1%e8%81%9a%e7%b1%bb%e7%ae%97%e6%b3%95/

(2)
adminadmin
上一篇 2015年1月28日
下一篇 2015年1月28日

相关推荐

  • 浅谈TCP/IP协议栈

    本次报告从TCP/IP四层模型出发,讲解了分层模型的原理和意义,并系统地从底层到顶层分别讲解了数据链路层、传输层和网络层这三层的主要协议和这些协议的实现原理。通过此次学术报告可以清…

    2020年1月12日
    1.1K
  • 文本生成大模型后门攻击研究

    研究文本生成大模型的后门攻击,揭示了现有文本大模型的后门风险。本次学术报告详细介绍了现有文本生成模型的后门分类方法以及基准数据集,在文本大模型的多个下游任务实现了后门攻击,并总结了…

    2025年3月24日
    977
  • 基于突变的模糊测试

    基于突变的模糊测试对于漏洞检测能力的开发和测试资源的利用较为重要,为了快速、高效地寻找到待测程序中的缺陷,需要提高模糊测试过程的测试效率。本次报告为大家介绍了基于突变的模糊测试的基…

    2024年6月19日
    503
  • 基于图的课程推荐方法

    课程推荐在人机协同、个性化学习平台等智能教育系统中具有重要价值,显著提升了模型对用户兴趣动态变化的建模能力与推荐效果。本次报告将介绍课程推荐任务,分析其研究背景与应用意义,并重点讲…

    2025年4月22日
    442
  • 对抗环境下的鲁棒机器学习

    对抗样本的存在表明现代神经网络是相当脆弱的。为解决这一问题,研究者相继提出了许多方法,其中使用对抗样本进行训练被认为是至今最有效的方法之一。 然而,经过对抗训练后神经网络对于正常样…

    2021年1月21日
    1.1K
  • 图匹配网络

    本次学术报告旨在带领听众完成图匹配网络相关知识入门。首先介绍了图匹配网络的基本概念;随后以GMN和MGMN为例讲解了图匹配网络的两种经典范式,详细阐述了图匹配网络的基本原理和应用场…

    2023年6月19日
    869
  • 数据集不平衡评估方法

    本报告围绕“数据集不平衡程度评估”展开,聚焦于如何科学量化多类数据中的结构性不平衡问题,突破传统以样本比例为核心的评估局限。报告系统回顾了不平衡评估的发展脉络,分析了现有方法在面对…

    2025年7月28日
    434
  • 基于度量学习的小样本学习方法介绍

    Few-shot learning (FSL)的含义是得到从少量样本中学习和概括的能力,它希望机器学习模型在学习了一定类别的大量数据后,对于新的类别,只需要少量的样本就能快速学习。…

    2020年11月2日
    1.9K
  • 面向深度学习软件库的动态漏洞挖掘方法

    针对开源软件库输入构建需要符合特定编程语言语法规范的问题,现有研究方法分别从构建模型输入和构建API输入两条路线出发,。LEMON方法针对缺陷引起的极小输出差异难以被察觉的问题,采…

    2022年7月3日
    884
  • 深度学习系统安全性测试及测试样本优先级排序

    深度学习在近十年取得了长足发展。由于其在复杂领域表现出优异的性能,逐渐被集成到软件体系中形成深度学习系统。这一方面推动了深度学习的发展,另一方面也对深度学习的安全性提出了巨大挑战:…

    2021年11月29日
    1.4K