Wireless Traffic Dataset for Krack and Kr00k Attacks in WPA2

This report centers on the “Wireless Traffic Dataset for KRACK and Kr00k Attacks in WPA2,” addressing the critical issues of data scarcity and poor reproducibility in this field. It systematically elaborates on the security mechanisms of WPA2 and the principles of its vulnerabilities. By constructing a realistic testbed with diverse clients, the study simulates and captures the complete traffic of both attacks. Moving beyond reliance on the direct release of raw traffic data, the report proposes a systematic framework for feature engineering and data preprocessing, resulting in the WPA2-KKID dataset comprising over 5.5 million data frames and 34 carefully selected features. The effectiveness of this dataset for attack detection was validated using machine learning methods, including SMOTE oversampling, PCA dimensionality reduction, and Random Forest. Finally, the report discusses the limitations of the current study regarding hardware/software scope and attack variety, outlining future directions for incorporating WPA3 and other vulnerabilities.

Wireless-Traffic-Dataset-for-Krack-and-Kr00k-Attacks-in-WPA2-Munna

原创文章,作者:bfs,如若转载,请注明出处:https://www.isclab.org.cn/2025/09/28/wireless-traffic-dataset-for-krack-and-kr00k-attacks-in-wpa2/

(0)
bfsbfs
上一篇 2025年9月25日 上午9:57
下一篇 2025年9月30日 上午11:14

相关推荐

  • 服务端模板注入漏洞

          服务端模板注入是攻击者通过与服务端模板的输入输出交互,在过滤不严格的情况下,构造恶意输入数据,从而达到获取关…

    2019年4月16日
    815
  • 基于迁移学习的日志异常检测方法

    本报告讲述了系统日志数据异常检测的基本框架,介绍了日志解析和迁移学习的基本概念和方法。通过分析日志数据特点和现有的基于深度学习的日志异常检测方法,详细讲解了两种基于迁移学习的日志异…

    2022年4月6日
    1.5K
  • 准确高效地检测安卓APP中的第三方库

    本次报告主要讲述了如何准确高效地检测安卓APP内的第三方库。介绍了第三方库检测的基本概念和主要困难,解释了准确高效检测第三方库的意义,详细讲解布隆过滤器的原理与使用方法、基于熵的代…

    2023年7月27日
    768
  • Transformer中的Multi-Head Attention

          注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中。随着注意力机制的…

    2018年12月17日
    1.0K
  • 个性化学习路径推荐

    随着人工智能等新兴技术在教育中广泛应用,推动了学习方式的深刻变革。面对多元化的学习需求及海量学习资源, 如何迅速完成学习目标、降低学习成本、个性化分配学习资源等问题成为限制个人和时…

    2024年4月17日
    1.9K
  • 极端多标签文本分类

    极端多标签文本分类旨在为每个文本分配大量可能的标签,处理标签数量巨大和数据稀疏性问题。该技术通过高效的特征选择、标签嵌入和深度学习模型,提高分类准确性和速度。极端多标签文本分类广泛…

    2024年9月17日
    922
  • 基于深度学习的源代码漏洞挖掘

    安全漏洞的数量和复杂程度与日俱增,导致漏洞挖掘的成本也在不断升高。而近年对深度学习的研究使得机器具有分析学习能力,如何将深度学习算法应用漏洞挖掘技术成为研究热点。本次报告首先介绍了…

    2020年2月27日
    1.6K
  • 大模型也不安全-小心信息被泄露

    研究大模型隐私泄露攻击,揭示了大模型面临的隐私信息泄露风险。本次学术报告介绍了大模型的应用价值和市场体量,讲述了关于大模型隐私泄露攻击的最新方法,指明了现有的缺陷和未来发展方向。

    2025年8月27日
    1.0K
  • Floyd解决传递闭包

    传递闭包:在数学上的定义——在集合X上的二元关系R的传递闭包是包含R的X上的最小传递关系。其中定义域是数据集X,而运算关系是必须具有传递性,这里的最小传递关系指的是包含所有可达路径…

    2015年3月10日
    1.2K
  • 大模型支持的程序崩溃故障定位方法

    本次报告聚焦大模型支持下的程序崩溃故障定位方法,介绍了AutoFL与FlexFL两个代表性算法,重点讲解了函数交互在大模型中的创新应用,并比较开源与闭源模型在定位精度与效率上的表现…

    2025年6月16日
    869