自动化漏洞挖掘初探

摘要:本报告介绍了web漏洞挖掘中的基本概念,实战通用方案及相关思路总结,进一步详细讲解了手工挖掘中存在的痛点问题,重点阐述了前沿自动化漏洞挖掘算法原理,分析其如何弥补手工挖掘的不足从而提升漏洞挖掘准确率。

自动化漏洞挖掘初探-邵思源

原创文章,作者:bfs,如若转载,请注明出处:https://www.isclab.org.cn/2023/02/13/%e8%87%aa%e5%8a%a8%e5%8c%96%e6%bc%8f%e6%b4%9e%e6%8c%96%e6%8e%98%e5%88%9d%e6%8e%a2/

(0)
bfsbfs
上一篇 2023年2月6日 上午11:11
下一篇 2023年2月20日 上午8:54

相关推荐

  • 大模型支持的程序崩溃故障定位方法

    本次报告聚焦大模型支持下的程序崩溃故障定位方法,介绍了AutoFL与FlexFL两个代表性算法,重点讲解了函数交互在大模型中的创新应用,并比较开源与闭源模型在定位精度与效率上的表现…

    2025年6月16日
    592
  • 模型无关元学习

    元学习是人工智能领域继深度学习、深度强化学习、生成对抗之后,又一个重要的研究分支。模型无关元学(MAML)算法可以适用于多个领域,包括少样本的回归、图像分类,以及增强学习,并且使用…

    2020年3月9日
    1.2K
  • 对抗性扰动下的后门防御方法

    后门防御旨在使用神经元剪枝、知识蒸馏等手段消除模型中隐藏的后门,阻止攻击者使用触发器样本控制深度学习模型的输出。本次学术报告主要讲解了两种以对抗性扰动和后门攻击关系为基础的后门防御…

    2024年1月17日
    1.1K
  • 极端多标签文本分类

    极端多标签文本分类旨在为每个文本分配大量可能的标签,处理标签数量巨大和数据稀疏性问题。该技术通过高效的特征选择、标签嵌入和深度学习模型,提高分类准确性和速度。极端多标签文本分类广泛…

    2024年9月17日
    708
  • 网络未知协议逆向技术

    网络协议逆向技术是指根据网络流量数据包进行静态分析,推断其所属协议的字段信息、报文格式、交互模式等信息。针对互联网中存在的大量未知(私有)协议进行逆向分析,发现潜在安全漏洞,对维护…

    2024年12月23日
    925
  • 机器学习模型后门攻击检测

    本次学术报告简要介绍了人工智能系统面临的各种安全威胁,通过将对抗样本与后门攻击进行多方面比较,从而引入了机器学习模型后门攻击的原理和检测方法,以及后门攻击技术的应用领域。

    2021年8月22日
    1.3K
  • 多标签学习综述

          多标签学习的研究对于多义性对象的学习建模具有十分重要的意义,现已逐渐成为机器学习界一个新的研究热点。本次报告…

    2019年7月10日
    1.1K
  • 深度神经网络模型水印保护方法

    摘要:本报告介绍了深度神经网络模型水印的基本概念和嵌入方式,并讲述了两种深度神经网络模型水印保护方法,从水印嵌入、提取和验证三个角度分析了保护模型的原理,提升对模型知识产权保护的认…

    2023年3月12日
    875
  • Glibc内存管理1

          内存管理是指软件运行时对计算机内存资源的分配和使用的技术。其最主要的目的是如何高效,快速的分配,并且在适当的…

    2019年6月13日
    691
  • 贝叶斯网络

    贝叶斯网络又称信度网络,是Bayes方法的扩展,是目前不确定知识表达和推理领域最有效的理论模型之一。从1988年由Pearl提出后,已经成为近几年来研究的热点.。

    2020年6月21日
    1.0K