基于度量学习的小样本学习方法介绍

Few-shot learning (FSL)的含义是得到从少量样本中学习和概括的能力,它希望机器学习模型在学习了一定类别的大量数据后,对于新的类别,只需要少量的样本就能快速学习。小样本学习概念最早在计算机视觉领域兴起,近年来受到广泛关注。本次学术报告讲解一些小样本的基本概念和目前比较主流的基于度量学习的小样本学习方法。

基于度量学习的小样本学习方法介绍-林朝坤

原创文章,作者:bfs,如若转载,请注明出处:https://www.isclab.org.cn/2020/11/02/%e5%9f%ba%e4%ba%8e%e5%ba%a6%e9%87%8f%e5%ad%a6%e4%b9%a0%e7%9a%84%e5%b0%8f%e6%a0%b7%e6%9c%ac%e5%ad%a6%e4%b9%a0%e6%96%b9%e6%b3%95%e4%bb%8b%e7%bb%8d/

(0)
bfsbfs
上一篇 2020年10月25日 下午9:44
下一篇 2020年11月10日 下午4:25

相关推荐

  • 基于图神经网络的二进制程序函数相似性检测

    二进制程序函数相似性检测常用于代码抄袭检测,同源漏洞判别,恶意软件分析等领域,本次报告主要简要介绍了基于图匹配,图嵌入的检测方法,详细介绍了基于图神经网络的相似性检测方法,最后介绍…

    2021年4月26日
    1.0K
  • GBDT梯度提升决策树

          梯度提升决策树(GBDT)是集成学习中梯度提升方法(Gradient Boost)与决策树(Decision…

    2018年5月7日
    762
  • 跨语言过程调用方法

    本报告介绍了跨语言过程调用的基本概念,展示了基于socket、http通信和rpc框架等三种方法的网络通信式过程调用的原理,梳理了基于ctypes和pybind11等两种方法的链接…

    2022年10月31日
    771
  • 基于汇编指令嵌入的漏洞同源性判别

    同源函数是由相同源码编译得到的程序函数。同源漏洞判别是漏洞挖掘的主要方法之一,用于发现已知漏洞的同源漏洞。本次报告主要汇报基于汇编指令嵌入的同源漏洞判别方法,介绍了汇编指令嵌入的基…

    2021年11月8日
    723
  • 强化学习中的信用分配

    本报告围绕强化学习中的“信用分配”难题,系统梳理了延迟/稀疏奖励场景下如何精准识别关键动作的研究脉络, 介绍LaRe与VinePPO两项新工作 ,分别利用大模型先验与无偏采样提升奖…

    2026年1月12日
    401
  • 网络未知协议逆向技术

    网络协议逆向技术是指根据网络流量数据包进行静态分析,推断其所属协议的字段信息、报文格式、交互模式等信息。针对互联网中存在的大量未知(私有)协议进行逆向分析,发现潜在安全漏洞,对维护…

    2024年12月23日
    945
  • 对抗环境下的鲁棒机器学习

    对抗样本的存在表明现代神经网络是相当脆弱的。为解决这一问题,研究者相继提出了许多方法,其中使用对抗样本进行训练被认为是至今最有效的方法之一。 然而,经过对抗训练后神经网络对于正常样…

    2021年1月21日
    1.1K
  • 网络安全态势感知

    随着网络技术的飞速发展,其安全问题日益突出。虽然已经采取了多种网络安全防护措施,但是单一的安全防护措施没有综合考虑各种防护措施之间的关联性,无法从宏观角度评估网络安全性。网络安全态…

    2020年4月21日
    1.2K
  • 面向生成模型的模型窃取方法

    针对判别模型窃取及防御方法的研究日趋成熟,近期的研究表明,生成模型同样面临模型窃取威胁。本次学术报告重点介绍了关于生成模型的窃取方法的原理,以及其与判别模型窃取方法、评价指标的区别…

    2022年7月19日
    933