网络表示学习-Deepwalk

      网络表示是衔接网络原始数据和网络应用任务的桥梁。网络表示学习算法负责从网络数据中学习得到网络中每个节点的向量表示, 之后这些节点表示就可以作为节点的特征应用于后续的网络应用任务,如节点分类、链接预测等。如何使用神经网络来进行网络表示学习?deepwalk进行了一次成功的尝试。本次报告介绍了deepwalk的设计思路和算法原理,并尝试从作者的角度理解deepwalk的创新思想。

附件-网络表示学习-Deepwalk.pdf

原创文章,作者:admin,如若转载,请注明出处:https://www.isclab.org.cn/2019/03/18/%e5%ad%a6%e6%9c%af%e6%8a%a5%e5%91%8a-%e7%bd%91%e7%bb%9c%e8%a1%a8%e7%a4%ba%e5%ad%a6%e4%b9%a0-deepwalk/

(0)
adminadmin
上一篇 2019年3月4日 上午11:21
下一篇 2019年3月26日 上午10:54

相关推荐

  • 从任务划分就开始与众不同的元学习

    meta-learning即元学习,也可以称为“learning to learn”。常见的深度学习模型,目的是学习一个用于预测的数学模型。而元学习面向的不是学习的结果,而是学习的…

    2022年10月3日
    720
  • 组合对抗攻击的自动化搜索方法

    对抗攻击是当下智能系统的新威胁,它使得很多在现实世界中应用的智能系统存在的安全漏洞极大地暴露了出来。近年来,学界提出了多种实现对抗攻击的方法,但是在不知道目标模型的防御细节的情况下…

    2021年5月6日
    1.2K
  • 源代码安全补丁存在性测试

    本报告围绕“源代码安全补丁存在性测试”展开,聚焦于如何自动识别开源软件中的安全补丁,解决安全补丁与普通补丁混杂、厂商静默发布、攻击窗口缩短等问题,介绍了一种结构感知的检测方法——R…

    2025年7月21日
    465
  • 联邦学习的参数更新方法

    联邦学习在为解决数据交换时的信息隐私安全及数据孤岛问题时被提出,现广泛应用的为横向联邦与纵向联邦,本次学术报告介绍了联邦学习的基本思路,并基于横向联邦说明了两种经典的参数更新和合并…

    2021年10月11日
    1.3K
  • 加密移动流量分析方法

    本次报告主要讲述了加密移动流量分析方法的相关内容,介绍了加密移动流量与普通流量的区别,流量分析的常用方法。解释了判断加密移动流量所属应用程序的分析方法,最后思考模糊流量对加密移动流…

    2022年4月24日
    1.2K
  • 基于Transformer的时间序列分析

    本次报告主要从Transformer框架入手,介绍基于Transformer模型的时间序列分析方法。针对Transformer模型的位置嵌入、注意力机制、模型架构三个方向在时间序列…

    2023年6月17日
    883
  • 深度学习讨论会

        本次学术报告简单介绍了深度学习的定义和过程,并给出了基于Keras实现手写数字识别的基本过程和实验结果,讨论了设置不同batch s…

    学术报告 2017年12月3日
    780
  • 人工智能模型的公平性测试

    人工智能技术发展迅速,不仅在图像领域,在决策系统等领域也发挥了重要作用。用于模型训练的数据集中含有显示或者隐式的敏感属性(如性别、种族等),模型往往会利用敏感属性的特征做出决策,这…

    2024年9月29日
    787
  • FNN模型正确性测试及测试样本生成

    FNN模型被广泛应用于自动驾驶、医疗诊断等安全关键的领域,因此需要测试模型的正确性,及时发现模型的缺陷并进行模型的修复与再训练。本次学术报告介绍了FNN模型正确性测试中遇到的两个关…

    2024年1月26日
    623
  • 初识虚拟化技术

    1.虚拟化技术的意义 虚拟化技术已有40多年的历史,它起源于对分时(Time Sharing)系统的需求。   1.1.为什么要使用虚拟化技术 很容易理解,由于不同任务耗…

    2014年10月21日
    1.1K