高斯混合模型及求解算法

      高斯混合模型(Gaussian mixture model,GMM)用于对样本的概率密度分布进行估计,而估计采用的模型(训练模型)是几个高斯模型的加权和。每个高斯模型就代表了一个类。对样本中的数据分别在几个高斯模型上投影,就会分别得到各个类上的概率,然后我们可以选取概率最大的类作为判决结果,以此达到对样本分类的目的。本次报告将从GMM的基本模型出发,从理论推导和抽象理解的角度分析GMM的求解算法,包括最大似然估计、EM算法等。

附件-高斯混合模型及求解算法.pdf

原创文章,作者:admin,如若转载,请注明出处:https://www.isclab.org.cn/2019/02/18/%e5%ad%a6%e6%9c%af%e6%8a%a5%e5%91%8a-%e9%ab%98%e6%96%af%e6%b7%b7%e5%90%88%e6%a8%a1%e5%9e%8b%e5%8f%8a%e6%b1%82%e8%a7%a3%e7%ae%97%e6%b3%95/

(1)
adminadmin
上一篇 2019年1月21日
下一篇 2019年2月24日

相关推荐

  • 自动化程序缺陷修复及其应用研究

    大型复杂软件系统的高频率开发迭代,导致潜在缺陷数量增加,影响工业控制、交通管理等关键领域正常运转。缺陷修复指生成软件缺陷的修复代码,降低人工成本。研究自动化缺陷修复,能够及时修复软…

    2024年8月18日
    503
  • 智能化系统的安全测试方法

    智能化系统越来越多地部署在对安全性至关重要的领域中,包括无人驾驶汽车和恶意软件检测。在这些领域中,系统行为的正确性和可预测性对于极端案例输入是至关重要的。软件测试作为软件部署前的重…

    2021年3月23日
    1.2K
  • 数据挖掘项目实战

          数据挖掘项目实战,主要以kaggle竞赛平台Titanic生存预测为例详细讲解数据挖掘项目的工作流程,具体包…

    学术报告 2018年5月2日
    749
  • Web快速开发方法简介

    本次报告先介绍了五种Web开发模式,讲解了各种开发模式的结构和优缺点,并结合实验室内部情况对合适的开发模式进行了推荐。之后简单介绍了Django、Flask、CherryPy这三个…

    2020年1月13日
    971
  • 序列标注模型

    背景知识 序列标注模型被广泛应用于文本处理相关领域,例如分词、词性标注、命名实体识别等方面。现有的序列标注模型主要有HMM,MEMM 以及 CRF,通过对这几种自然语言处理中常用的…

    2015年2月2日
    1.1K
  • 基于深度学习的文本分类方法

    在自然语言处理任务中,文本分类旨在将文本文档分类为给定的类别,是一项基础而重要的任务。近年来,深度神经模型由于其表现力和对特征工程的最低要求而在文本分类中越来越受欢迎。然而,将深度…

    2022年3月7日
    637
  • 深度神经网络模型窃取防御方法

    模型窃取防御技术能够促进深度神经网络的健康发展,推动数据交流与共享。本次报告从大范围的模型窃取防御领域,聚焦到一类算法,从数学公式上对算法进行详细的分析,并对实验结果进行详细解读,…

    2023年9月27日
    814
  • 联邦学习

    联邦学习(Federated Learning)在2016年由谷歌最先提出,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或…

    2020年6月7日
    1.3K
  • 内部威胁检测方法

    近年来,内部(insider)攻击,包括组织信息系统破坏、信息盗窃、电子欺诈等,具有很强的隐蔽性和破坏性,对个人、企业和国家安全构成了巨大的威胁。因此,我们应该更加关注内部威胁的研…

    2021年10月27日
    926
  • 时序知识图谱推理

    着大数据和人工智能技术的飞速发展,知识图谱已成为表示和存储结构化知识的重要工具,其中时序知识图谱则进一步强调了事件随时间演变的重要性。本次学术报告致力于讲解时序知识图谱推理方法,重…

    2024年5月18日
    854