高斯混合模型及求解算法

      高斯混合模型(Gaussian mixture model,GMM)用于对样本的概率密度分布进行估计,而估计采用的模型(训练模型)是几个高斯模型的加权和。每个高斯模型就代表了一个类。对样本中的数据分别在几个高斯模型上投影,就会分别得到各个类上的概率,然后我们可以选取概率最大的类作为判决结果,以此达到对样本分类的目的。本次报告将从GMM的基本模型出发,从理论推导和抽象理解的角度分析GMM的求解算法,包括最大似然估计、EM算法等。

附件-高斯混合模型及求解算法.pdf

原创文章,作者:admin,如若转载,请注明出处:https://www.isclab.org.cn/2019/02/18/%e5%ad%a6%e6%9c%af%e6%8a%a5%e5%91%8a-%e9%ab%98%e6%96%af%e6%b7%b7%e5%90%88%e6%a8%a1%e5%9e%8b%e5%8f%8a%e6%b1%82%e8%a7%a3%e7%ae%97%e6%b3%95/

(1)
adminadmin
上一篇 2019年1月21日
下一篇 2019年2月24日

相关推荐

  • 时序知识图谱推理

    着大数据和人工智能技术的飞速发展,知识图谱已成为表示和存储结构化知识的重要工具,其中时序知识图谱则进一步强调了事件随时间演变的重要性。本次学术报告致力于讲解时序知识图谱推理方法,重…

    2024年5月18日
    851
  • 匮乏资源命名实体识别

    NER作为自然语言处理中的一项基础任务,应用范围非常广泛。命名实体识别是许多任务的基本组成部分,并已被深度神经网络大大推进。目前NER只是在有限的领域和实体类型中取得了较好的成绩,…

    2021年11月2日
    867
  • Not all bytes are equal Neural byte siev

          简单高效的漏洞检测方法一直是信息系统安全领域研究的热点,微软研究人员借助机器学习和深度神经网络开发出一种用于…

    2019年1月21日
    574
  • 深度神经网络模型水印保护方法

    摘要:本报告介绍了深度神经网络模型水印的基本概念和嵌入方式,并讲述了两种深度神经网络模型水印保护方法,从水印嵌入、提取和验证三个角度分析了保护模型的原理,提升对模型知识产权保护的认…

    2023年3月12日
    887
  • 模型无关元学习

    元学习是人工智能领域继深度学习、深度强化学习、生成对抗之后,又一个重要的研究分支。模型无关元学(MAML)算法可以适用于多个领域,包括少样本的回归、图像分类,以及增强学习,并且使用…

    2020年3月9日
    1.2K
  • 基于图结构处理的文本生成

    文本生成技术是自然语言处理中一个重要的研究领域,具有广阔的应用前景。传统文本生成的Seq2Seq框架不能有效地利用原始语料中的语义信息,而Graph2Seq模型可以丰富文本的语义知…

    2022年2月28日
    744
  • 深度模型可解释方法

          深度模型可解释性一直是业界关注的问题。报告介绍了一种新颖的深度学习可解释性方法——树正则化。通过在深度模型训…

    学术报告 2018年3月26日
    637
  • 使用Python进行并发编程

    本次报告首先介绍了线程、进程的概念,由此讲解操作系统中实现并发编程的三种方式,着重介绍了Python语言下多线程、多进程、协程的编程方法,并结合开发实际,给出了在线程、进程、协程之…

    2020年2月27日
    1.0K
  • 基于深度学习的文本分类方法

    在自然语言处理任务中,文本分类旨在将文本文档分类为给定的类别,是一项基础而重要的任务。近年来,深度神经模型由于其表现力和对特征工程的最低要求而在文本分类中越来越受欢迎。然而,将深度…

    2022年3月7日
    637
  • 数据集不平衡评估方法

    本报告围绕“数据集不平衡程度评估”展开,聚焦于如何科学量化多类数据中的结构性不平衡问题,突破传统以样本比例为核心的评估局限。报告系统回顾了不平衡评估的发展脉络,分析了现有方法在面对…

    2025年7月28日
    434