

缺乏先验知识条件下的模型 窃取方法

2021年04月11日

内容提要

- 背景简介
- 基本概念
- 算法原理
- 优劣分析
- 应用总结
- 参考文献

• 预期收获

- 1. 了解机器学习的云服务现状
- 2. 了解模型窃取方法的发展历史
- 3. 理解缺乏先验知识的模型窃取方法的技术原理
- 4. 了解模型窃取在网络安全领域中的应用

- 机器学习的发展
 - 在从图像分类到语音识别等各个领域都取得了最先进的性能
 - 使用大量敏感的训练数据来训练模型,并且通常需要花费大量计算资源
- · 许多云提供商已经启动了机器学习即服务(MLaaS)

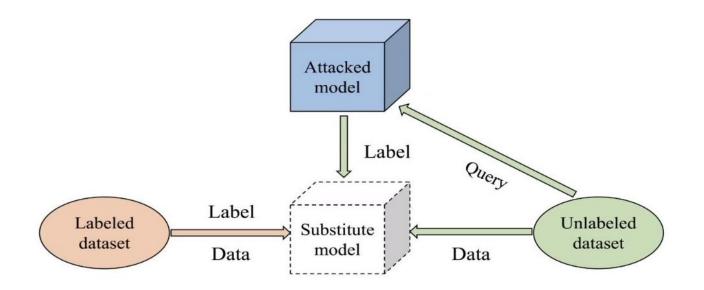
- 模型窃取提出的目的
 - 免费使用模型:模型训练者将模型托管在云上,提供访问模型的API,通过对其他用户每次调用API的方式来收费,恶意的用户将企图窃取这个模型免费使用
 - 破坏训练数据的隐私性: 利用对模型的多次访问可以推断出训练数据信息
 - 绕过安全检测:在很多场景中,机器学习模型用于检测恶意行为,例如垃圾邮件过滤,恶意软件检测,网络异常检测。攻击者在提取到目标模型后,可以构造相应的对抗样本,以绕过安全检测

• 模型窃取的发展历史

- 2016年,Tramer等人通过求解从机器学习模型结构导出的方程来提取模型的参数,但只限于SVM、随机森林等简单的模型
- 2017年,Papernot以牺牲替代模型的准确性为代价,通过近似目标模型的决策边界, 近似窃取了DNN模型
- 2018-2019年,Orekondy等一些科学家先后在已知训练数据、已知训练数据种子样本、已知与训练数据有相似属性的数据集等条件下,实现了对DNN的窃取

• 研究现状

现有的大多数模型窃取攻击都需要有关目标DNN的训练数据或辅助数据的知识。实际上这些数据并不总是可访问的,由于数据保护意识的提升,很难获取如健康数据、生物特征等类型的数据



基本概念

基本概念

基本概念

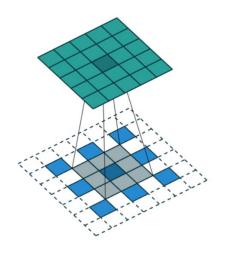
基本概念

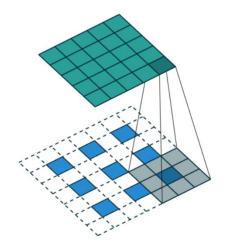
- 模型窃取
 - 一种攻击者通过循环发送数据并查看对应的响应结果,来推测机器学习模型的参数或功能,从而复制出一个功能相似甚至完全相同的机器学习模型的攻击方法
- 对抗样本
- 无目标攻击 (Non-targeted Attack)
 - 只需让模型辨认的结果是错误即可,不关心会被识别成什么类别,只关心不让输入被识别成正确的类别
- 目标攻击 (Targeted Attack)
 - 不只要让模型获得错误的分类结果,而且要让其被分类成指定的类

基本概念

- 基本概念
 - 图像上采样(Upsampling)
 - 一种让图像变成更高分辨率的技术,在原有图像像素的基础上在像素点之间采用合适的插值算法(双线性插值,反卷积,反池化)插入新的元素





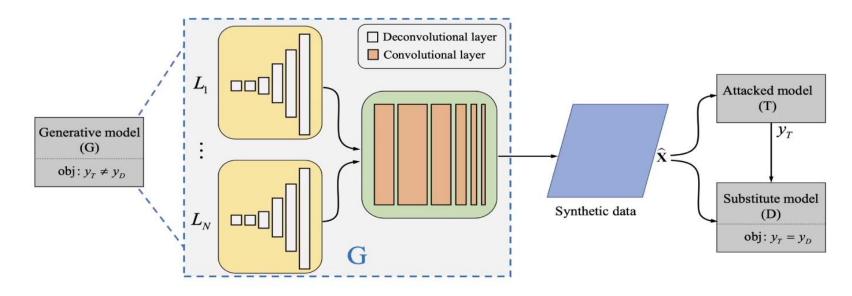


算法原理

Т	在无先验知识的条件下进行模型窃取
I	可查询的目标模型
Р	For { 1. 生成器产生随机样本数据 2. 通过目标模型为样本数据打标签生成训练集 3. 通过训练集训练替代模型 4. 优化生成器 }
O	与目标模型功能相近的替代模型

Р	无法获得原始的训练数据与内部参数
С	攻击者可以自由访问被攻击模型获得其输出
D	生成与原训练数据分布相近的训练数据
L	NDSS 2020

• 算法流程图



the objective of G: generate samples $\widehat{\mathbf{X}} = G(\mathbf{X})$ and let

 $y_D(\widehat{\mathbf{X}}) \neq y_T(\widehat{\mathbf{X}})$

the objective of D: guarantee $y_D(\widehat{\mathbf{X}}) = y_T(\widehat{\mathbf{X}})$

- ・算法基本步骤
 - 使用生成模型G产生替代模型D的训练数据
 - 使用生成的数据探测被攻击模型T的输出T(x)

7 : end for

- 由(x, T(x))训练替代模型D
- 不断的迭代,直至达到收敛条件

Algorithm 1 Mini-batch stochastic gradient descent training of the proposed method DaST.

```
# acc denotes the accuracy of D. att denotes the attack success rate for the attacks generated by D.

1: While iteration <\delta or acc, att do not increace

2: Generate m examples \{\widehat{\mathbf{X}}^{(1)}, \dots, \widehat{\mathbf{X}}^{(m)}\} by G.

3: Update the substitute model:

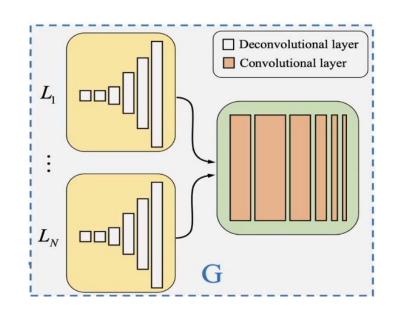
4: \mathcal{L}_D = d(T(\widehat{\mathbf{X}}), D(\widehat{\mathbf{X}})).

5: Update the generative model:

6: \mathcal{L}_G = e^{-d(T,D)} + \alpha \mathcal{L}_C.
```


· 训练数据生成器G

- G的目标是寻找能够使得T与D输出不一致的样本, 挖掘T与D的不同之处。再用生成样本训练D,进而 不断地逼近T,形成了一种对抗的形式
- 在没有真实样本指导的情况下,G生成的数据可能 会集中于某些分布区间之中
- 设计了一个包含N个上采样反卷积生成网络
- G从输入空间和可变标签值中随机采样噪声向量z
- z被输入到第n个上采样反卷积网络和共享卷积网络, 以产生数据X=G(z, n)

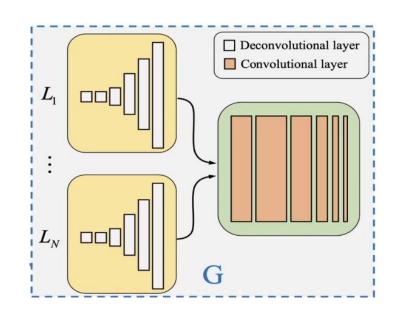


- 训练数据生成器G
 - 建立模型G的附加标签控制损失公式Lc ,Lc会约束T对生成图像的分类结果,使之能够与之前的控制信号n对应

$$\mathcal{L}_C = CE(T(G(\mathbf{z}, n)), n)$$

- 但这违背了对T无先验知识的条件,由于在训练 过程中,D的输出将逐渐接近T的输出

$$\mathcal{L}_C = \text{CE}(D(G(\mathbf{z}, n)), n)$$

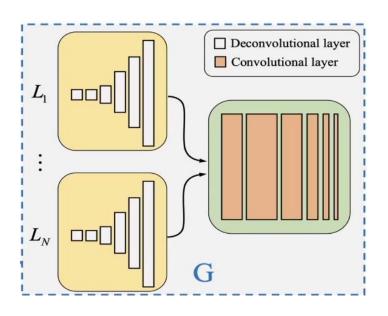


CE: 交叉熵代价函数 (Cross-entropy cost function) 用来表征真实样本标签和预测 概率之间差值函数

- 训练数据生成器G
 - 为了避免T和D输出之间的差异越来越大,将G的损失函数更新为

$$\mathcal{L}_G = e^{-d(T,D)} + \alpha \mathcal{L}_C$$

随着D的模仿能力增强,由T标注的合成样本的多样性会逐渐增强



数据集

- 实验在MNIST和CIFAR-10上进行评估,这两个数据集的测试集分别有10k个图像
- 实验条件
 - 实验场景中攻击者可以自由访问被攻击模型的输出
 - 被攻击模型的先验知识未知
- 实验设置
 - 被攻击型为训练好的VGG-16与中型网络
 - 替代模型设计了三种网络结构(3个卷积层的小型网络,4个卷积层的中型网络,5个卷积层的大型网络)
 - 评价方法: 替代模型生成的对抗样本的攻击成功率

- MINST数据集上的实验
 - 训练好的中型网络为T模型,使用三种网络结构作为D模型,将训练好的D模型分别用于Non-targeted与Targeted Attack

Attack	Non-targeted		
Attack	Pre-trained	DaST-P	DaST-L
FGSM	59.72 (5.40)	69.76 (5.41)	35.74 (5.40)
BIM	85.70 (4.80)	96.36 (4.81)	64.61 (4.82)
PGD	37.93 (3.98)	53.99 (3.99)	23.22 (3.98)
C&W	23.34 (2.91)	27.35 (2.74)	18.16 (2.75)
Attack	Targeted		
Attack	Pre-trained	DaST-P	DaST-L
FGSM	12.10 (5.46)	20.45 (4.49)	13.10 (5.46)
BIM	37.83 (4.90)	57.22 (4.87)	29.18 (4.87)
PGD	28.95 (4.60)	47.57 (4.63)	19.25 (4.63)
C&W	10.32 (2.57)	23.80 (2.99)	12.31 (2.98)

Attack	Non-targeted		
	Small	Medium	Large
FGSM	62.61 (4.38)	56.21 (4.45)	69.76 (5.41)
BIM	94.86 (4.85)	92.47 (4.84)	96.36 (4.81)
PGD	45.31 (3.99)	43.62 (3.99)	53.99 (3.99)
C&W	30.61 (2.89)	24.34 (2.75)	23.80 (2.99)
Attack		Targeted	
Attack	Small	Medium	Large
FGSM	19.92 (4.43))	20.45 (4.49)	23.93 (5.45)
BIM	56.73 (4.89)	53.50 (4.84)	57.22 (4.87)
PGD	39.42 (4.64)	40.76 (4.60)	47.57 (4.63)
C&W	24.86 (3.09)	16.25 (3.13)	23.80 (2.99)

- 本方法生成的替代模型的攻击成功率明显高于其他预训练模型(在FGSM、BIM、PGB与C&W上分别为10.04%、10.66%、16.06%和4.01%)

- · CIFAR-10数据集上的实验
 - 训练好的VGG-16网络为T模型,分别使用VGG-13、ResNet-18、ResNet-50三种网络结构作为D模型

Attack	Non-targeted		
Attack	Pre-trained	DaST-P	DaST-L
FGSM	39.10 (1.54)	39.63 (1.54)	22.65 (1.54)
BIM	59.18 (1.01)	59.71 (1.18)	28.42 (1.19)
PGD	35.40 (1.02)	29.10 (1.10)	17.80 (1.10)
C&W	9.76 (0.77)	13.52 (0.74)	10.34 (0.74)
Attack		Targeted	
Attack	Pre-trained	DaST-P	DaST-L
FGSM	9.62 (1.54)	6.69 (1.54)	7.32 (1.54)
BIM	17.43 (1.00)	20.22 (1.18)	15.26 (1.16)
PGD	10.46 (1.05)	14.09 (1.12)	8.32 (1.10)
C&W	23.15 (2.05)	26.53 (1.98)	19.78 (2.04)

	X	[4 4] (f)	1)	
Attack	Non-targeted (%)			
ritteek	VGG-13	ResNet-18	ResNet-50	
FGSM	6.87 (1.54)	17.97 (1.54)	39.63 (1.54)	
BIM	93.13 (1.18)	31.70 (1.54)	59.71 (1.18)	
PGD	56.14 (1.08)	10.04 (1.11)	29.10 (1.10)	
C&W	56.80 (1.64)	11.54 (1.64)	13.52 (0.74)	
Attack	Targeted (%)			
Attack	VGG-13	ResNet-18	ResNet-50	
FGSM	18.27 (1.54)	2.07 (1.54)	6.69 (1.54)	
BIM	62.23 (1.24)	8.00 (1.52)	20.22 (1.18)	
PGD	41.48 (1.17)	3.72 (1.26)	14.09 (1.12)	

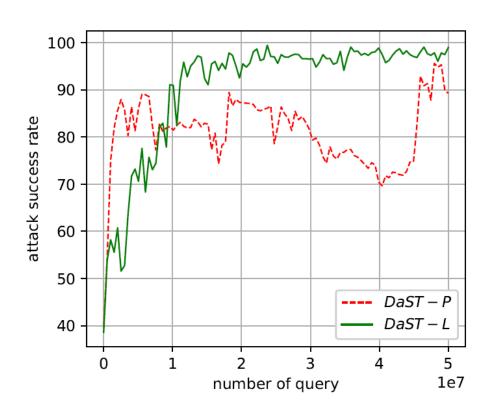
- 使用这三种网络作为D模型窃取VGG-16网络时,性能也优于其他与训练模型,其中VGG-13远超其他网络模型,这表明替代模型与目标模型的结构越相似,窃取效果越好

- 攻击Microsoft Azure上的在线模型(黑盒)
 - 训练好的大型网络(5个卷积层)为替代模型

Attack	Non-targeted (%)		
Attack	Pre-trained	DaST-P	DaST-L
FGSM	77.96 (5.41)	96.83 (5.25)	98.21 (5.36)
BIM	66.25 (4.81)	96.42 (4.79)	98.35 (4.72)
PGD	59.23 (3.99)	90.63 (3.88)	96.97 (3.96)
Attack	Targeted (%)		
Attack	Pre-trained	DaST-P	DaST-L
FGSM	13.52 (5.46)	32.00 (5.21)	43.99 (5.37)
BIM	19.31 (4.88)	50.21 (4.90)	71.15 (4.56)
PGD	19.31 (4.60)	45.66 (4.46)	65.91 (4.32)

- DasT-L的性能优于DaST-P的原因是目标模型结构简单

- 查询次数与准确率的关系
 - 当利用被攻击模型的输出概率训练时,准确率曲线快速上升,之后发生震荡
 - 获取被攻击模型的输出标签的情况下,反而能够让准确率曲线更加平滑



优劣分析

• 横向对比

- 优势
 - 利用对抗生成网络的思想,使用生成器产生数据训练替代模型,再由替代模型与目标模型的差异修正生成器
- 不足
 - 生成器的分支结构使得在窃取大规模模型时,需要耗费大量的训练资源
 - 需要生成大量数据进行目标模型的输入查询,为其生成标签;由于生成数据的不可控,还会有大量无效查询
- 纵向对比
 - 减少了对目标模型的先验知识的依赖性

应用总结

应用总结

- 算法的应用领域
 - 通过模型窃取生成对抗样本
 - 通过模型窃取获得原始训练数据
- 未来的发展
 - 模型窃取方法的可迁移性
 - 模型窃取的数据依赖性

荃考文献

- [1] Zhou M, Wu J, Liu Y, et al. DaST: Data-free Substitute Training for Adversarial Attacks[J]. IEEE, 2020.
- [2] Yuan X, Ding L, Zhang L, et al. ES Attack: Model Stealing against Deep Neural Networks without Data Hurdles. 2020.
- [3]F Tramèr, Fan Z, Juels A, et al. Stealing Machine Learning Models via Prediction APIs[J]. 2016.
- [4] Papernot N, Mcdaniel P, Goodfellow I, et al. Practical Black-Box Attacks against Machine Learning[J]. ACM, 2016.

谢谢!

大成若缺,其用不弊。大盈若冲,其用不穷。大直若屈。 大巧若拙。大辩若讷。静胜 躁,寒胜热。清静为天下正。

