Beijing Forest Studio 北京理工大学信息系统及安全对抗实验中心

深度学习系统的自动化测试简介

流层字习系统时目动化测试简门

深度神经网络(DNN)自动化测试 硕士研究生 王逸洲 2020年07月12日

内容提要

- 背景简介
- 基本概念
- 算法原理
- 优劣分析
- 应用总结
- 参考文献

背景简介

• 预期收获

- 理解深度学习系统测试与传统软件测试的区别
- 理解基于覆盖的深度学习系统测试方法原理
- 了解深度学习系统测试的应用前景

背景简介

- 深度学习(DL)在图像分类、语音识别等领域达到或超过了人类水平的性能,且被广泛应用于安全关键领域中(自动驾驶、恶意软件检测等)。
- 一些原因(如训练数据偏差、模型过拟合或欠拟合),会 导致深度学习系统在一些边角案例(corner cases) 中表现出意料之外或错误的行为。

背景简介

- · 当前DNN系统测试的标准方法:
 - 收集并手动标记尽可能多的真实世界测试数据
 - 通过模拟生成合成训练数据(例如Google自动驾驶汽车)

存在问题:

- 手动标记大量复杂、高维度数据需要的人力成本高
- 测试覆盖低,现有的DNN测试方案都没有尝试覆盖DNN的不同规则,测试输入常常无法揭示DNN的不同错误行为

基本概念

- 基本概念
 - DNN系统: 指包含至少一个深度神经网络(DNN)组件的软件系统。
 - 模糊测试:是一种软件测试技术,其核心思想是自动或半自动的生成随机数据输入到一个程序中,并监视程序异常。
 - 基本步骤:
 - 识别目标系统
 - 确定输入
 - 生成模糊数据
 - 使用模糊数据执行测试
 - 监控系统行为
 - 记录缺陷

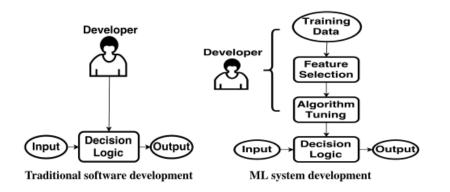
基本概念

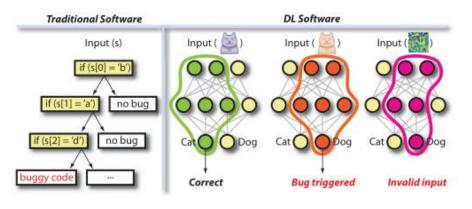
- 传统软件白盒测试的覆盖标准
 - 函数覆盖率
 - 指令覆盖率
 - 判断覆盖率
 - 条件覆盖率
 - 条件/判断覆盖率
 - _ ...
- 深度神经网络系统的测试标准
 - -???

传统软件的测试标准能否直接用于DNN系统的测试?

基本概念

• 传统软件系统开发与深度学习(机器学习)系统的区别





• 传统软件系统开发

- 决策逻辑由开发人员手动编写
- 根据不同的条件、指令、判断等产生不同输出
- 决策逻辑是白盒

• 深度学习系统的开发部署

- 决策逻辑通过模型训练自动生成
- 根据每层神经元的输出等产生不 同输出
- 决策逻辑是黑盒

算法原理——DeepXplore

Т	基于种子测试样本,自动生成测试样本完成测试
ı	无标签的测试种子样本(Seed)、待测试DNN模型
Р	 选择种子样本 梯度计算 输入待测试模型 判断是否出错
0	高覆盖率测试样本集

Р	1.当前DNN系统测试方法缺少覆盖标准 2.当前测试样本选择(生成)方法难以覆盖模型的所有 潜在错误
С	DNN网络结构已知,且神经元输出可读取
D	如何生成高覆盖率的测试样本集(如何提高测试覆盖)
L	SOSP 2017 (操作系统顶会)

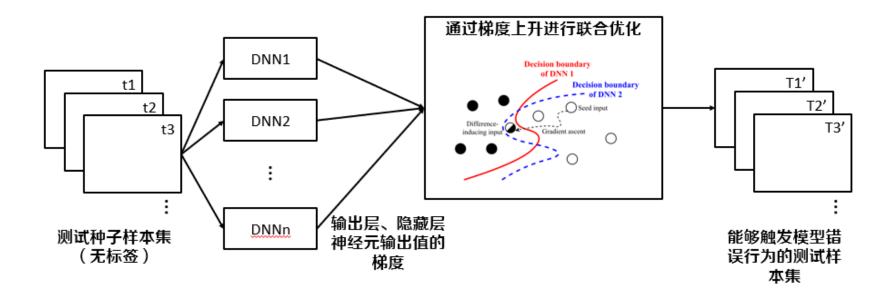
- 自动化测试面临的三个问题
 - 如何客观评价测试过程及结果?
 - 测试框架如何判断被测试模型出现错误? (Test Oracle)
 - 如何自动化生成能够使模型产生错误行为的测试样本?

- 如何评价测试结果? (神经元覆盖率)
 - 一组测试输入所激活的神经元数量与DNN网络神经元总数的 比值
 - 若神经元的输出值高于设定阈值,则认定神经元被激活

$$NCov(T, \mathbf{x}) = \frac{|\{n | \forall x \in T, out(n, x) > t\}|}{|N|}$$

- $T = \{x_1, x_2, ...\}$, 表示测试输入样本集
- $N = \{n_1, n_2, ...\}$, 表示DNN网络的神经元集合
- out(n,x),返回DNN中神经元n对于给定测试输入的输出值的函数

- 测试框架如何判断被测试模型出现错误?
- 如何自动化生成能够使模型产生错误行为的测试样本?



- 目标1: 生成触发相同任务不同DNN网络差异行为的样本
- 目标2: 生成能够最大化神经元覆盖率的测试样本

Algorithm 1 Test input generation via joint optimization

```
    Input: seed_set ← unlabeled inputs as the seeds
        dnns ← multiple DNNs under test
        λ₁ ← parameter to balance output differences of DNNs (Equation 2)
        λ₂ ← parameter to balance coverage and differential behavior
        s ← step size in gradient ascent
        t ← threshold for determining if a neuron is activated
        p ← desired neuron coverage
        cov_tracker ← tracks which neurons have been activated
```

```
1: /* main procedure */
 2: gen test := empty set
 3: for cycle(x ∈ seed_set) do // infinitely cycling through seed_set
       /* all dnns should classify the seed input to the same class */
        c = dnns[0].predict(x)
       d = randomly select one dnn from dnns
        while True do
           obj1 = COMPUTE_OBJ1(x, d, c, dnns, \lambda_1)
           obj2 = COMPUTE OBJ2(x, dnns, cov tracker)
10:
           obj = obj1 + \lambda_2 \cdot obj2
11:
           grad = \partial obj / \partial x
12:
           /*apply domain specific constraints to gradient*/
            grad = DOMAIN_CONSTRNTS(grad)
13:
           x = x + s \cdot grad //gradient ascent
14:
            if d.predict(x) \neq (dnns-d).predict(x) then
15:
               /* dnns predict x differently */
16:
17:
               gen_test.add(x)
18:
               update cov_tracker
19:
                break
20:
        if DESIRED_COVERAGE_ACHVD(cov_tracker) then
21:
            return gen test
```

- $\operatorname{obj}_1(x) = \sum_{k \neq j} F_k(x)[c] \lambda_1 \cdot F_j(x)[c]$
 - $-F_k(x)[c]$:DNN网络k将样本x预测为c 的分类概率
 - $-\lambda_1$: 用于平衡 \mathbf{DNN} 网络之间的输出差 异
- $\bullet \quad \text{obj}_2(x) = f_n(x)$
 - f_n(x)表示神经元n对于DNN网络的输
 人x产生的输出值
- $\operatorname{obj}_{joint}(x) = \operatorname{obj}_{1}(x) + \lambda_{2} \cdot \operatorname{obj}_{2}(x)$
 - λ₂: 用于平衡覆盖和差异行为的参数

• 实验数据集和待测试模型

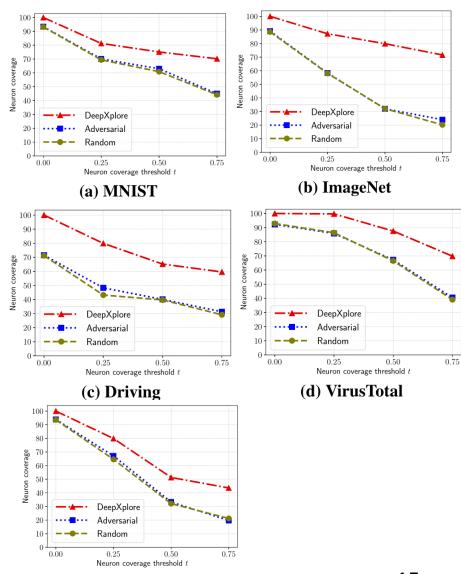
Dataset	Dataset	DNN	DNN Nome	# of	Architecture	Reported	Our
Dataset	Description	Description	DNN Name	Neurons	Architecture	Acc.	Acc.
MNIST	Hand-written digits	LeNet variations	MNI_C1	52	LeNet-1, LeCun et al. [40, 42]	98.3%	98.33%
			MNI_C2	148	LeNet-4, LeCun et al. [40, 42]	98.9%	98.59%
			MNI_C3	268	LeNet-5, LeCun et al. [40, 42]	99.05%	98.96%
	General images	State-of-the-art	IMG_C1	14,888	VGG-16, Simonyan et al. [66]	92.6%**	92.6%**
Imagenet		image classifiers	IMG_C2	16,168	VGG-19, Simonyan et al. [66]	92.7%**	92.7%**
		from ILSVRC	IMG_C3	94,059	ResNet50, He et al. [31]	96.43%**	96.43%**
Driving	Driving video frames	Nvidia DAVE self-driving systems	DRV_C1	1,560	Dave-orig [8], Bojarski et al. [10]	N/A	99.91%#
			DRV_C2	1,560	Dave-norminit [78]	N/A	99.94%#
			DRV_C3	844	Dave-dropout [18]	N/A	99.96%#
Contagio/Virustotal	PDFs	PDF malware detectors	PDF_C1	402	<200, 200>+	98.5%-	96.15%
			PDF_C2	602	<200, 200, 200>+	98.5%-	96.25%
			PDF_C3	802	<200, 200, 200, 200>+	98.5%-	96.47%
Drebin	Android apps	Android app malware detectors	APP_C1	402	<200, 200>+, Grosse et al. [29]	98.92%	98.6%
			APP_C2	102	<50, 50>+, Grosse et al. [29]	96.79%	96.82%
			APP_C3	212	<200, 10>+, Grosse et al. [29]	92.97%	92.66%

实验结果

Table 2: Number of difference-inducing inputs found by DeepXplore for each tested DNN obtained by randomly selecting 2,000 seeds from the corresponding test set for each run.

DNN name	Hyp	erpara	# Differences		
DININ Hame	λ_1	λ_2	s	t	Found
MNI_C1					1,073
MNI_C2	1	0.1	10	0	1,968
MNI_C3					827
IMG_C1					1,969
IMG_C2	1	0.1	10	0	1,976
IMG_C3					1,996
DRV_C1					1,720
DRV_C2	1	0.1	10	0	1,866
DRV_C3					1,930
PDF_C1					1,103
PDF_C2	2	0.1	0.1	0	789
PDF_C3					1,253
APP_C1					2,000
APP_C2	1	0.5	N/A	0	2,000
APP_C3					2,000

Dataset	Code C	Coverage		Neuron Coverage			
	C1	C2	C3	C1	C2	C3	
MNIST	100%	100%	100%	32.7%	33.1%	25.7%	
ImageNet	100%	100%	100%	1.5%	1.1%	0.3%	
Driving	100%	100%	100%	2.5%	3.1%	3.9%	
VirusTotal	100%	100%	100%	19.8%	17.3%	17.3%	
Drebin	100%	100%	100%	16.8%	10%	28.6%	



(e) Drebin

- 神经元覆盖率(NC)的局限性
 - 仅通过NC无法完全表示DNN可能会产生的所有行为
 - 有实验证明通过25个样本即可达到100%覆盖率
- 细粒度测试指标的提出
 - K-段神经元覆盖率: 衡量测试样本集对神经元输出区间 $[low_n, high_n]$ 的覆盖范围
 - 一神经元边界覆盖率: 衡量测试样本集对模型功能边界区域的覆盖程度
 - Top-k神经元覆盖率: 衡量测试样本集对模型每一层最活跃的k个神经元的覆盖程度

_

优劣分析

- DeepXplore的优势
 - 填补了深度学习系统测试标准的空白
 - 指导测试样本生成,提高模型、系统的安全性
- DeepXplore的劣势
 - 仅从神经元覆盖率(NC)无法表明测试样本集覆盖了 DNN模型的所有可能的输出(25个测试输入可达到100% 覆盖)
 - 测试过程依赖多个DNN网络

应用总结

- 应用领域
 - 自动驾驶
 - 恶意软件检测
 - 语音识别
- 未来的发展
 - 循环神经网络(RNN)系统自动化测试方法
 - 复杂结构的深度学习系统的自动化测试
 - 深度学习系统黑盒自动化测试标准的提出

参考文献

[1] Pei K, Cao Y, Yang J, et al. DeepXplore: Automated Whitebox Testing of Deep Learning Systems[J]. 2017.

[2] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang Chen, Ting Su, Li Li, Yang Liu, Jianjun Zhao, and Yadong Wang. 2018. DeepGauge: Multi-Granularity Testing Criteria for Deep Learning Systems. In Proceedings of the 2018 33rd ACM/IEEE International Conference on Automated Software Engineering (ASE '18), September 3 - 7, 2018, Montpellier, France. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3238147. 3238202

[3] https://blog.csdn.net/cindy_cheng/article/details/84323229



道德经

知人者智,自知者明。

胜人者有力,自胜者

强。知足者富。强行

者有志。不失其所者

久。死而不亡者,寿。

