Beijing Forest Studio
e B T REE B R G M@ X i sg 5a 0

Boosting Methods

[E8s

Riivia

N
o
o

KX

2017409 H 10 H

=41l

L YIN) A
kR
55 0
7 F e &

o PlaRE 2] IR T

unknown ta'rget f}Jnction @” bolhaals Set :@

f: X =Y < Y P —

(ideal credit approval formula) I | > - oo
1 L (setof candioats Jormui) _ e -

learning

training examples :
9 O algorithm

D: (x1,}’1), e ,(XN,}’N
(historical records in bank)

g=f
(‘learned’ formula to be used)

1(66.6,)

[1] H&H, MBIFIER

o £ER%~>] (Ensemble learning)

— In statistics and machine learning, ensemble methods use multiple

learning algorithms to obtain better predictive performance than could be

obtained from any of the constituent learning algorithms alone.

— Bayes optimal classifier — Bootstrap aggregating (bagging)
e all the hypotheses e trains each model using a
— Bayesian parameter averaging randomly drawn subset of the
— Bayesian model combination training set
— Bucket of models — Boosting
— Stacking
4

Wikipedia, Ensemble learning

e Bagging

Training
Sample

Random
Sample

Random

-+ Gu(z) -

- Ga(z) [G(x) = sign [Z C}:me(iII)]

-> G (:1:) -

Sample

o £ER%~>] (Ensemble learning)

— In statistics and machine learning, ensemble methods use multiple

learning algorithms to obtain better predictive performance than could be

obtained from any of the constituent learning algorithms alone.

— Bayes optimal classifier — Bootstrap aggregating (bagging)
e all the hypotheses e trains each model using a
— Bayesian parameter averaging randomly drawn subset of the
— Bayesian model combination training set
— Bucket of models — Boosting
— Stacking
6

Wikipedia, Ensemble learning

Boosting

e Boosting
— Incrementally building an
ensemble by training each new
model instance to emphasize the
training instances that

previous models misclassified.

m=1

G(x) = sign [ZM a:me(:c)]

Weighted
Sample

Weighted
Sample

Training
Sample

Boosting - Toy Example

Decision Stump

X,<0.2

YGN

+

Boosting - Toy Example

e, = 0.30
a; = 0.42

10

Boosting - Toy Example

Boosting - Toy Example

€1 = 0.30 €y = 0.21 €3 = 0.14
o) = 0.42 i, = 0.65 iy = 0.92

12

Boosting - Toy Example

H. =sign| 042 +0.65 +0.92
final
|
+ 4|- H = sign[0.42%(-1) + 0.65%(-1) + 0.92%(+1)]
= sign[-0. 15]
+ | - = -1

13

BV R P

o AL fE)EK T

— 1. XE—1 “new model” FHAFAER?

— 2. Nt AR S] PR R s AR [ROR 2

3. REARUED, ()RR e(R) =) Dy(i)d(h(x;) # y;)
=1
— 4 a, MFEE R TR E 1 ? 1 (1—&@0)
ot — — In
2 Et(ht)

14

BV R P

e “New model” — Weak learner

— A

random guessing.

‘weak’ learner is just one which performs just slightly better than

—— Schapire, 1990

— Decision stump

v’

'y
© o
(o] .
— o} Q Decision surface
- o [0} "] [
o o |] I.. - o]_.
- = kernel LT
o0 W E gm erne A -_,.
o HE mm © "' .
o ® m g m —_—» . I
o "mm ®m
© "ogNEg_ W 0,
]
(=] © @ o o © © o = 00 00 (0] (9' 0 O o
o © C “°o
Class 2 o © 0%08 0 %
Ne o © 8 000 o000
o © oo

15

e The Strength of Weak Learnability

— Boosting is based on the

question posed by Kearns
and Valiant (1988, 1989)

“Can a set of weak learners
create a single strong learner?”

Schapire, 1990

Machine Learning, 5, 197-227 (1990)
© 1990 Kluwer Academic Publishers, Boston. s in The Netherland

The Strength of Weak Learnability

ROBERT E, SCHAPIRE (rs@@theory. les mit.edu)
MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139

Abstract, This paper addresses the problem of improving the y of an hypothesis output by a learning
algorithm in the distribution-free (PAC) learning model. A concept class Is learnable (or strongly learnabie) if,
given access o a source of examples of the unknown concept, the learner with high probability is able to output
an hypothesis that is correct on all but an arbitrarily small fraction of the instances. The concept class s weakly
learnable \f the learner can produce an hypothesis thut performs only slightly better than random guessing. In
this paper, it is shown that these two notions of learnability are equivalent,

A method is described for converting & weak learning algorithm into one that achieves arbitrarily high sccuracy.
This construction muy have practical applications as a ol for efficiently Y Icunln‘ igorith
into one that performy extremely well, In addition, the hus some §)
including a set of general upper bounds on the complexity of any strong learning lllorilhm asa funukm Mlhr
allowed error ¢

Keywords, Machine learning, learning from examples, learnability theory, PAC learning, polynomial-time
Identification,

L. Introduction

Since Valiant's pioneering paper (1984), interest has flourished in the so-called distribution-
[ree or probably approximately correct (PAC) model of lummg In this model, the learner
mcs o ldcnnfy an unk n pt based on randomly les of the P

are ch m a fixed but unknown and lrbilrary distribution on the
space of instances, The leumcr s task is to find an hypothesis or prediction rule of his own
that correctly classifies new instances as positive or negative examples of the concept. With
high probability, the hypothesis must be correct for all but an arbitrarily small fraction
of the instances.

Often, the infi task includes a requi that the output hypothesis be of a specified
form. In this paper, however, we will instead be concerned with a representation-independent
model of learning in which the learner may output any hypothesis that can be used to classify
instances in polynomial time.

A class of concepts is learnable (or strongly learnable) if there exists a polynomial-time
algorithm that achieves low error with high confid; for all pts in the class. A
weaker model of learnability, called weak learnability, drops the requirement that the learer
be able to achieve arbitrarily high accuracy; a weak lwmng nlgonlhm nocd only oulpul
an hypothesis that performs slightly better (by an inverse poly 1) than
The notion of weak learnability was introduced by Kearns and Valiant (1988; |989) who

left open the question of whether the notions of stmng and weak lamablllly are cquwnlenl
This quemion was termed the hypothesis b g problem since sh g the are
equivalent requires a method for boosting the low y of a weak learning algorithm's
hypotheses.

16

BV R P

* De(i) & ay
71 % PRLEX
er(h) = Z Dy(2)d(h(x;) # yi)
i=1

TRV SR B A5
hy = argminy, €;(h)

Rty R
. 1 1— Et(ht)
a=gln (et(ht))

FEARE

exp [—ay| <1 if he(x;) = s

exp [—yiathi(x;)] = {exp (o] > 1 if he(X;) # i

Adaboost (Adaptive Boosting)
(o, h)* = argmin Z exp |[—yi{a, h(x;))]

=1

17

, Adaboost Adaboost
Logitboost m
* — . " "
[oss (e, h)* = argmin E exp [—yi{a, h(x;))]
=1
Loss Derivative i Algorithm
%(l’/i - f(xi))2 v — f(xi) E [y|x;] L2Boosting
0-1 lDES lyi — f(x:)]| sgn(y; — f(xi)) median(y|x;) Gradient boosting
exp(—#if(xi)) —viexp(—7:f(x:)) 3log e AdaBoost
log(l+e98) g —m; 3 log T LogitBoost
I
."\H- £
N g Margin
Mistakes Correct

18

BV R P

e Boosting Methods

Discrete AdaBoost [Freund and Schapire (1996b)]

1. Start with weights w;, =1/N,i=1,..., N.
2. Repeatform=1,2,..., M:

(a) Fit the classifier f,,(x) € {—1, 1} using weights w; on the training data.

(b) Compute err,, = E,[1,.s (xp)s € =1log((1 — err,,)/err,,).

(c) Set w; « w; explc,, 1, 45 (sl i =1,2,..., N, and renormalize so that
2w =1

3. Output the classifier sign[>"¥ ¢, f,.(x)].

Real AdaBoost

1. Start with weights w, _1,:"N i=1,2,...,N.
2. Repeat form=1,2,..., M:

(a) Fit the classifier to obtain a class probability estimate p,, (x) = P,(y =
1|x) € [0, 1], using weights w; on the training data.

(b) Set f,.(x) « % log pr(x)/(1 - pw(x)) € R.

(c) Set w; < w;exp[—y;fn(x)], i =12,...,
dow; =1

3. Output the classifier sign[3"Y_ £, (x)].

N, and renormalize so that

1. Start with weights w, _1,:"N i=1,2,.
2. Repeat form=1,2,..., M:

Gentle AdaBoost
N, F(x)=0.

(a) Fit the regression function f, (x) by weighted least-squares of y; to x;
with weights w,.

(b) Update F(x) < F(x)+ f,.(x).

(c) Update w; « w; exp(—y;f,.(x;)) and renormalize.

3. Output the classifier sign[F(x)] = sign[s-¥_ £,.(2)].

1. Start with weights w;=1/N i=1,2,...,

LogitBoost (two classes)

N, F(x)=0 and probabhility esti-
mates p(x;) = ;.

2. Repeat form=1,2,..., M:

(a) Compute the working response and weights

2 — — p(x;)
"op(x)(1 - p(x;))’
w; = p(x;)(1 = p(x;)).

(b) Fit the function f,,(x) by a weighted least-squares regression of z; to
x; using weights w;.
(c) Update F(x) < F(x) + 5[m(x) and p(x) « (eF*))/(eF®) + e~ F2)),

3. Output the classifier sign[F(x)] = sign[} Y, f,.(x)].

Boosting

Test Error

Te]
S -
Single Stump
<
g
(40}
e
400 Node Tree

<
o

Some characteristics of different learning methods.

| |]]
0 100 200 300 400
Boosting Iterations

Key: @= good, = =fair, and @=poor.
Characteristic Neural SVM CART GAM KNN, Gradient
Nets Kernel Boost
Natural handling of data
of “mixed” type ® e L ® ® ®
Handling of missing val-
ues] [] o ® [] []
Robustness to outliers in
input space ® e L ® ®
Insensitive to monotone
transformations of in- e L ® e e o
puts
Computational scalabil-
ity (large N) ® o ® ® ® ®
Ability to deal with irrel-
evant inputs o L ® o e
Ability to extract linear
combinations of features o e ® e
Interpretability
] [] @] []
Predictive power
[] [] [] @ [] []

21

e« GBDT (Gradient Boosting Decision Tree)

— Boosting & Gradient boosting

— Adaboost — Gradient boosting

{(Xir» Yi)} ?:1 {(Xi)»Tim)} ?:1

o [313(%,1?(“7:'))]
OF(z;) 1 pw)=r, ()

1 1 —e(h L
ap = 5 In (th;bi) t)) Vi = arg;nin;L (yiy Frn-1(;) + Yhm (x;))

G(x) = sign [Eile U G (:c)]

22

e XGBoost — a system

— XGBoost provides a parallel tree boosting (GBDT) that solve many data

science problems in a fast and accurate way.

— Technical Highlights
o« Sparse aware tree learning
e Distributed weighted quantile sketch
 Cache aware learning algorithm
— Impact
» XGBoost is one of the most frequently used package to win machine
learning challenges

e Can solve billion scale problems with few resources

23

it SCBLIR

Schapire, 1990
— The Strength of Weak Learnability

Schapire, etc. 1993

— First application of boosting idea to a real world OCR(Optical Character Recognition)
task

CVPR 2017

— Fast Boosting Based Detection Using Scale Invariant Multimodal Multiresolution Filtered

Features

NIPS 2016

— SEBOOST - Boosting Stochastic Learning Using Subspace Optimization Techniques

— Boosting with Abstention

— Incremental Boosting Convolutional Neural Network for Facial Action Unit Recognition

24

FINER, HAMEW.

v v '
MEAEATS1, EREE ﬁj‘ﬁf{)

HEHEE

54T E A

ARELFT#E A

SEMANTE, 7

25

