您现在所在的位置:首页 >> 科学研究 >> 共享资源 >> 学术报告 >>
发布日期:2019年4月21日
学术报告-机器学习中的多分类问题

      机器学习在现实中常常遇到多分类问题,而一些优秀的二分类学习算法(如逻辑回归,SVM等等)不支持多分类任务。一般地,对于这类问题通用的解决策略是对将其进行拆分,即将多分类任务拆解成多个二分类任务,常用的拆解策略有一对一、一对多和多对多,另外还有有向无环图、层级分类等扩展算法。本次报告介绍了这5种算法的原理和优劣势分析,并展示了两个实际中多分类任务拆解的应用。

附件-机器学习中的多分类问题.pdf