您现在所在的位置:首页 >> 科学研究 >> 共享资源 >> 学术报告 >>
发布日期:2019年2月18日
学术报告-高斯混合模型及求解算法

      高斯混合模型(Gaussian mixture model,GMM)用于对样本的概率密度分布进行估计,而估计采用的模型(训练模型)是几个高斯模型的加权和。每个高斯模型就代表了一个类。对样本中的数据分别在几个高斯模型上投影,就会分别得到各个类上的概率,然后我们可以选取概率最大的类作为判决结果,以此达到对样本分类的目的。本次报告将从GMM的基本模型出发,从理论推导和抽象理解的角度分析GMM的求解算法,包括最大似然估计、EM算法等。

附件-高斯混合模型及求解算法.pdf