您现在所在的位置:首页 >> 科学研究 >> 共享资源 >> 学术报告 >>
发布日期:2018年10月17日
学术报告-简述对抗样本检测方法

      对抗样本会的存在严重威胁到机器学习模型的输出准确性。目前最常用的对抗样本生成方法是FGSM,其通过在沿着损失函数梯度方向添加一个细小的扰动,来“增大”损失,进而改变目标函数的输出。而我们通过FGSM基于目标模型生成对抗样本,并将其与原始样本组合去训练一个二分类器,最终将对抗样本从原始样本中“剔除”出去。

附件-对抗样本检测方法.pdf